Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38931840

ABSTRACT

(1) Background: Antimicrobial resistance is growing at an extreme pace and has proven to be an urgent topic, for research into alternative treatments. Such a prospective possibility is hidden in antimicrobial peptides because of their low to no toxicity, effectiveness at low concentrations, and most importantly their ability to be used for multiple treatments. This work was focused on the study of the effect of the modification in position 7 of Temporin A on its biological activity; (2) Methods: The targeted peptides were synthesized using Fmoc/Ot-Bu SPPS. The antibacterial activity of the analogs was determined using the broth microdilution method and disk-diffusion method. In vitro tests were performed to determine the cytotoxicity, phototoxicity, and antiproliferative activity of the peptide analogs on a panel of tumor and normal cell lines; (3) Results: All analogs except DTCit showed good antibacterial activity, with DTDab having the best activity according to the disk-diffusion method. However, DTCit had an acceptable cytotoxicity, combined with good selectivity against the test MCF-7 cell line; (4) Conclusions: The obtained results revealed the importance of the basicity and length of the side chain at position 7 in the Temporin A sequence for both tested activities.

2.
Sci Rep ; 13(1): 4866, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36964177

ABSTRACT

Progress in sample preparation for scRNA-seq is reported based on RevGel-seq, a reversible-hydrogel technology optimized for samples of fresh cells. Complexes of one cell paired with one barcoded bead are stabilized by a chemical linker and dispersed in a hydrogel in the liquid state. Upon gelation on ice the complexes are immobilized and physically separated without requiring nanowells or droplets. Cell lysis is triggered by detergent diffusion, and RNA molecules are captured on the adjacent barcoded beads for further processing with reverse transcription and preparation for cDNA sequencing. As a proof of concept, analysis of PBMC using RevGel-seq achieves results similar to microfluidic-based technologies when using the same original sample and the same data analysis software. In addition, a clinically relevant application of RevGel-seq is presented for pancreatic islet cells. Furthermore, characterizations carried out on cardiomyocytes demonstrate that the hydrogel technology readily accommodates very large cells. Standard analyses are in the 10,000-input cell range with the current gelation device, in order to satisfy common requirements for single-cell research. A convenient stopping point after two hours has been established by freezing at the cell lysis step, with full preservation of gene expression profiles. Overall, our results show that RevGel-seq represents an accessible and efficient instrument-free alternative, enabling flexibility in terms of experimental design and timing of sample processing, while providing broad coverage of cell types.


Subject(s)
Sequence Analysis, RNA , Single-Cell Analysis , Sequence Analysis, RNA/methods , Hydrogels/chemistry , Single-Cell Analysis/methods , Humans , Animals , Mice , Gene Expression Profiling
3.
Life Sci Alliance ; 6(4)2023 04.
Article in English | MEDLINE | ID: mdl-36720500

ABSTRACT

FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.


Subject(s)
Intellectual Disability , Ribose , Humans , Methylation , Intellectual Disability/genetics , Methyltransferases/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Neurons/metabolism , Nuclear Proteins/genetics
4.
Nucleic Acids Res ; 48(4): 2050-2072, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31943105

ABSTRACT

2'-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1. Genetic knockout studies together with MALDI-TOF mass spectrometry and RiboMethSeq mapping revealed that CG7009 is responsible for methylating the wobble position in tRNAPhe, tRNATrp and tRNALeu, while CG5220 methylates position C32 in the same tRNAs and also targets additional tRNAs. CG7009 or CG5220 mutant animals were viable and fertile but exhibited various phenotypes such as lifespan reduction, small RNA pathways dysfunction and increased sensitivity to RNA virus infections. Our results provide the first detailed characterization of two TRM7 family members in Drosophila and uncover a molecular link between enzymes catalyzing Nm at specific tRNAs and small RNA-induced gene silencing pathways.


Subject(s)
Drosophila melanogaster/genetics , Gene Silencing , RNA, Transfer/genetics , tRNA Methyltransferases/genetics , Animals , Gene Expression Regulation/genetics , Humans , Methylation , Methyltransferases/genetics , Nuclear Proteins/genetics , RNA Interference , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.
Genes (Basel) ; 10(2)2019 02 05.
Article in English | MEDLINE | ID: mdl-30764532

ABSTRACT

Nm (2'-O-methylation) is one of the most common modifications in the RNA world. It has the potential to influence the RNA molecules in multiple ways, such as structure, stability, and interactions, and to play a role in various cellular processes from epigenetic gene regulation, through translation to self versus non-self recognition. Yet, building scientific knowledge on the Nm matter has been hampered for a long time by the challenges in detecting and mapping this modification. Today, with the latest advancements in the area, more and more Nm sites are discovered on RNAs (tRNA, rRNA, mRNA, and small non-coding RNA) and linked to normal or pathological conditions. This review aims to synthesize the Nm-associated human diseases known to date and to tackle potential indirect links to some other biological defects.


Subject(s)
Autoimmune Diseases/genetics , Neoplasms/genetics , Nervous System Diseases/genetics , RNA Processing, Post-Transcriptional , RNA/metabolism , Animals , Epigenesis, Genetic , Humans , Methylation , RNA/genetics
6.
Article in English | MEDLINE | ID: mdl-29707539

ABSTRACT

Analogous to DNA methylation and histone modifications, RNA modifications represent a novel layer of regulation of gene expression. The dynamic nature and increasing number of RNA modifications offer new possibilities to rapidly alter gene expression upon specific environmental changes. Recent lines of evidence indicate that modified RNA molecules and associated complexes regulating and "reading" RNA modifications play key roles in the nervous system of several organisms, controlling both, its development and function. Mutations in several human genes that modify transfer RNA (tRNA) have been linked to neurological disorders, in particular to intellectual disability. Loss of RNA modifications alters the stability of tRNA, resulting in reduced translation efficiency and generation of tRNA fragments, which can interfere with neuronal functions. Modifications present on messenger RNAs (mRNAs) also play important roles during brain development. They contribute to neuronal growth and regeneration as well as to the local regulation of synaptic functions. Hence, potential combinatorial effects of RNA modifications on different classes of RNA may represent a novel code to dynamically fine tune gene expression during brain function. Here we discuss the recent findings demonstrating the impact of modified RNAs on neuronal processes and disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...