Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Photodiagnosis Photodyn Ther ; 42: 103525, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36966867

ABSTRACT

BACKGROUND: Cutaneous leishmaniasis (CL) is an important tropical neglected disease with broad geographical dispersion. The lack of effective drugs has raised an urgent need to improve CL treatment, and antimicrobial photodynamic therapy (APDT) has been investigated as a new strategy to face it with positive outcomes. Natural compounds have emerged as promising photosensitizers (PSs), but their use in vivo remains unexplored. PURPOSE: In this work, we investigated the potential of three natural anthraquinones (AQs) on CL induced by Leishmania amazonensis in BALB/c mice. STUDY DESIGN/METHODS: ANIMALS WERE INFECTED AND RANDOMLY DIVIDED INTO FOUR GROUPS: CG (control, non-treated group), G5ClSor-gL (treated with 5-chlorosoranjidiol and green LED, 520±10 nm), GSor-bL and GBisor-bL (treated with soranjidiol and bisoranjidiol, respectively, exposed to violet-blue LED, 410±10 nm). All AQs were assayed at 10 µM and LEDs delivered a radiant exposure of 45 J/cm2 with an irradiance of 50 mW/cm2. We assessed the parasite burden in real time for three consecutive days. Lesion evolution and pain score were assessed over 3 weeks after a single APDT session. RESULTS: G5ClSor-gL was able to sustain low levels of parasite burden over time. Besides, GSor-bL showed a smaller lesion area than the control group, inhibiting the disease progression. CONCLUSION: Taken together, our data demonstrate that monoAQs are promising compounds for pursuing the best protocol for treating CL and helping to face this serious health problem. Studies involving host-pathogen interaction as well as monoAQ-mediated PDT immune response are also encouraged.


Subject(s)
Anti-Infective Agents , Leishmaniasis, Cutaneous , Photochemotherapy , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Leishmaniasis, Cutaneous/drug therapy , Anti-Infective Agents/therapeutic use , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Mice, Inbred BALB C
2.
Pharmaceutics ; 15(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678827

ABSTRACT

Rifampicin is a potent antimicrobial drug with some suboptimal properties, such as poor stability, low solubility, and variable bioavailability. Therefore, in the current study, a multicomponent complex between rifampicin, γ-cyclodextrin, and arginine was prepared with the aim of improving drug properties. Solubility was evaluated by phase-solubility studies. The mechanism of interaction was established through proton nuclear magnetic resonance spectroscopy and molecular modeling. Physicochemical characterization was investigated using Fourier transform-infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopy. The dissolution properties, antimicrobial activity (antibacterial, antibiofilm, and antileishmanial), and stability of the different samples were studied. The results obtained in this investigation demonstrate that multicomponent complexes can improve the water solubility and dissolution rate of rifampicin, as well as its antibacterial and antileishmanial action, and present suitable stability. In conclusion, rifampicin complexed with γ-cyclodextrin and arginine is an attractive approach for developing pharmaceutical dosage forms of rifampicin with increased antimicrobial activities.

3.
Photochem Photobiol ; 96(3): 604-610, 2020 05.
Article in English | MEDLINE | ID: mdl-31792979

ABSTRACT

Cutaneous leishmaniasis (CL) is a neglected disease that promotes destructive lesions. Difficulties in treatment are related to accessibility of drugs, resistance and toxicity. Antimicrobial photodynamic therapy (APDT) has been emerging as a promising treatment for CL. In this work, we evaluated methylene blue (MB)-mediated APDT (MB-APDT) on Leishmania amazonensis in vitro and in vivo by bioluminescence technique. In vitro, MB-APDT was performed using a red LED (λ = 660 ± 11 nm, 100 mW cm-2 ) and MB (100 µm) at different light doses. In vivo, mice were infected and 4 weeks later, randomly divided into three groups: control, APDT 1 (single session) and APDT 2 (two sessions of MB-APDT). MB was used at 100 µm and energy dose was established at 150 J cm-2 . Parasite burden, lesion size and pain were evaluated weekly for 4 weeks. In vitro, lethal dose for 90% parasite inactivation was achieved at 48.8 J cm-2 . In vivo, although APDT 1 and APDT 2 groups have showed similar parasite burden after 4 weeks, two sessions were clinically better, especially considering the inflammatory process associated to CL. Our findings reinforce MB-APDT as a cost-effective treatment to combat CL.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Methylene Blue/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Leishmaniasis, Cutaneous/drug therapy , Luminescence , Mice , Mice, Inbred BALB C
4.
Phytochemistry ; 137: 94-100, 2017 May.
Article in English | MEDLINE | ID: mdl-28196653

ABSTRACT

Seven anthraquinones were isolated from aerial parts of Heterophyllaea lycioides (Rusby) Sandwith (Rubiaceae), including three derivatives that have not been described before: a hetero-bianthraquinone identified as (R)-2-hydroxymethyl-2'methyl-1,1',6,6'-tetrahydroxy-5,5' bianthraquinone (lycionine), and two mono-chlorinated derivatives related to soranjidiol. One of them is a homo-bianthraquinone: (R)-7-chloro-2,2'-dimethyl-1,1',6,6'-tetrahydroxy-5,5' bianthraquinone (7-chlorobisoranjidiol), whereas the second halogenated derivative corresponds to a monomeric structure: 5-chloro-1,6-dihydroxy-2-methyl anthraquinone (5-chlorosoranjidiol). The four known compounds were already isolated from another species of this genus, H. pustulata, and they were identified as 5,5'-bisoranjidiol, soranjidiol, pustuline and heterophylline. Structural elucidation was performed by means of an extensive spectroscopic analysis, including 1D and 2D NMR data as well as by HRMS analysis. Chemical structures of 7-chlorobisoranjidiol and 5-chlorosoranjidiol were confirmed by their synthesis from 5,5'-bisoranjidiol and soranjidiol, respectively. Type I photosensitizing properties (superoxide anion radical generation, O2-) were assessed by using the nitroblue tetrazolium assay. When lycionine and chlorinated derivatives were irradiated, they enhanced the O2- production with respect to the control; 7-chlorobisoranjidiol stood out by generating an increase of 20%, whereas the other anthraquinones only produced a slight increase of 7%.


Subject(s)
Anthraquinones/chemistry , Photosensitizing Agents/chemistry , Rubiaceae/chemistry , Anthraquinones/isolation & purification , Molecular Structure , Photosensitizing Agents/isolation & purification , Plant Components, Aerial/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...