Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 193, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632257

ABSTRACT

Autism Spectrum Disorders (ASD) are principally diagnosed by three core behavioural symptoms, such as stereotyped repertoire, communication impairments and social dysfunctions. This complex pathology has been linked to abnormalities of corticostriatal and limbic circuits. Despite experimental efforts in elucidating the molecular mechanisms behind these abnormalities, a clear etiopathogenic hypothesis is still lacking. To this aim, preclinical studies can be really helpful to longitudinally study behavioural alterations resembling human symptoms and to investigate the underlying neurobiological correlates. In this regard, the BTBR T+ Itpr3tf/J (BTBR) mice are an inbred mouse strain that exhibits a pattern of behaviours well resembling human ASD-like behavioural features. In this study, the BTBR mice model was used to investigate neurochemical and biomolecular alterations, regarding Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), together with GABAergic, glutamatergic, cholinergic, dopaminergic and noradrenergic neurotransmissions and their metabolites in four different brain areas, i.e. prefrontal cortex, hippocampus, amygdala and hypothalamus. In our results, BTBR strain reported decreased noradrenaline, acetylcholine and GABA levels in prefrontal cortex, while hippocampal measurements showed reduced NGF and BDNF expression levels, together with GABA levels. Concerning hypothalamus, no differences were retrieved. As regarding amygdala, we found reduced dopamine levels, accompanied by increased dopamine metabolites in BTBR mice, together with decreased acetylcholine, NGF and GABA levels and enhanced glutamate content. Taken together, our data showed that the BTBR ASD model, beyond its face validity, is a useful tool to untangle neurotransmission alterations that could be underpinned to the heterogeneous ASD-like behaviours, highlighting the crucial role played by amygdala.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Animals , Humans , Autistic Disorder/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Acetylcholine , Dopamine , Nerve Growth Factor/metabolism , Mice, Inbred C57BL , Mice, Inbred Strains , Synaptic Transmission/physiology , Autism Spectrum Disorder/metabolism , Amygdala/metabolism , gamma-Aminobutyric Acid , Disease Models, Animal
2.
Article in English | MEDLINE | ID: mdl-38242425

ABSTRACT

Stressful events during pregnancy impact on the progeny neurodevelopment. However, little is known about preconceptional stress effects. The rat social isolation represents an animal model of chronic stress inducing a variety of dysfunctions. Moreover, social deprivation during adolescence interferes with key neurodevelopmental processes. Here, we investigated the development of behavioural, neurochemical and redox alterations in the male offspring of socially isolated female rats before pregnancy, reared in group (GRP) or in social isolation (ISO) from weaning until young-adulthood. To this aim, females were reared in GRP or in ISO conditions, from PND21 to PND70, when they were mated. Their male offspring was housed in GRP or ISO conditions through adolescence and until PND70, when passive avoidance-PA, novel object recognition-NOR and open field-OF tests were performed. Levels of noradrenaline (NA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), glutamate (GLU) and GABA were assessed in the prefrontal cortex (PFC). Moreover, cortical ROS levels were quantified, as well as NF-kB and the NADPH oxidase NOX2 expression, redox status (expressed as GSH:GSSG ratio) and SOD1 amount. A significant decrease of the latency time in the PA was observed in the offspring of ISO females. In the NOR test, while a significant increase in the exploratory activity towards the novel object was observed in the offspring of GRP females, no significant differences were found in the offspring of ISO females. No significant differences were found in the OF test among experimental groups. Theoffspring of ISO females showed increased NA and 5-HIAA levels, whereas in the offspring persistently housed in isolation condition from weaninguntil adulthood, we detected reduced 5-HT levels and ehnanced 5-HIAA amount. No significant changes in GLU concentrations were detected, while decreased GABA content was observed in the offspring of ISO females exposed to social isolation. Increased ROS levels as well as reduced NF-κB, NOX2 expression were detected in the offspring of ISO females. This was accompanied by reduced redox status and enhanced SOD1 levels. In conclusion, our results suggest that female exposure to chronic social stress before pregnancy might have a profound influence on the offspring neurodevelopment in terms of cognitive, neurochemical and redox-related alterations, identifying this specific time window for possible preventive and therapeutic strategies.


Subject(s)
Glutamic Acid , Serotonin , Female , Male , Pregnancy , Animals , Rats , Hydroxyindoleacetic Acid , Reactive Oxygen Species , Superoxide Dismutase-1 , NF-kappa B , Norepinephrine , Oxidation-Reduction , gamma-Aminobutyric Acid
3.
Biomed Pharmacother ; 158: 114181, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36592494

ABSTRACT

Subjects suffering from psychosis frequently experience anxiety. However, mechanisms underlying this comorbidity remain still unclear. We investigated whether neurochemical and neuroendocrine dysfunctions were involved in the development of anxiety-like behavior in a rodent model of psychotic-like symptoms, obtained by exposing male rats to social isolation rearing from postnatal day 21 to postnatal day 70. In the elevated zero maze test, isolated rats showed a significant reduction in the time spent in the open arms, as well as an increase in the time spent in the closed arms, compared to controls. An increased grooming time in the open field test was also observed in isolated animals. Isolation-induced anxiety-like behavior was accompanied by a decrease of plasmatic oxytocin, prolactin, ghrelin and melatonin levels, whereas plasmatic amount of Neuropeptide S was not altered. Social isolation also caused a reduction of noradrenaline, serotonin and GABA levels, together with an increase of serotonin turnover and glutamate levels in the amygdala of isolated animals. No significant differences were found in noradrenaline and serotonin levels, as well as in serotonin turnover in hippocampus, while glutamate amount was increased and GABA levels were reduced in isolated rats. Furthermore, there was a reduction in plasmatic serotonin content, and an increase in plasmatic kynurenine levels following social isolation, while no significant changes in serotonin turnover were observed. Taken together, our data provide novel insights in the neurobiological alterations underlying the comorbidity between psychosis and anxiety, and open new perspectives for multi-target therapies acting on both neurochemical and neuroendocrine pathways. DATA AVAILABILITY STATEMENT: The data presented in this study are available on request from the corresponding author.


Subject(s)
Anxiety , Serotonin , Rats , Animals , Male , Serotonin/metabolism , Anxiety/metabolism , Social Isolation , Norepinephrine/metabolism , gamma-Aminobutyric Acid/metabolism , Behavior, Animal
4.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36145275

ABSTRACT

Glucoraphanin (GRA) is a natural compound that has shown beneficial effects in chronic diseases and in central nervous system disorders. Moreover, GRA displayed antidepressant activity in preclinical models. We have previously demonstrated that a single intracerebroventricular administration of soluble amyloid-beta 1-42 (sAß 1-42) in rat evokes a depressive-like phenotype by increasing immobility frequency in the forced swimming test (FST). The aim of this work was to investigate the effect of GRA in naïve and in sAß-1-42-treated rats by using the FST. Behavioural analyses were accompanied by neurochemical and biochemical measurements in the prefrontal cortex (PFC), such as serotonin (5-HT), noradrenaline (NA), kynurenine (KYN), tryptophan (TRP), reactive oxygen species (ROS) and the transcription nuclear factor kappa B (NF-kB) levels. We reported that GRA administration in naïve rats at the dose of 50 mg/kg reduced the immobility frequency in the FST and increased 5-HT and NA levels in the PFC compared to controls. At the same dose, GRA reverted depressive-like effects of sAß 1-42 administration, restored the 5-HT levels and reduced NF-kB, KYN and ROS levels in PFC. In conclusion, GRA rapidly reverting depressive-like behaviour, together with biochemical and neurochemical alterations, might represent a safe and natural candidate for the treatment of depression.

5.
Article in English | MEDLINE | ID: mdl-35460811

ABSTRACT

Autism Spectrum Disorders (ASD) core symptoms include deficits of social interaction, stereotyped behaviours, dysfunction in language and communication. Beyond them, several additional symptoms, such as cognitive impairment, anxiety-like states and hyperactivity are often occurring, mainly overlapping with other neuropsychiatric diseases. To untangle mechanisms underlying ASD etiology, and to identify possible pharmacological approaches, different factors, such as environmental, immunological and genetic ones, need to be considered. In this context, ASD animal models, aiming to reproduce the wide range of behavioural phenotypes of this uniquely human disorder, represent a very useful tool. Ketamine administration in early postnatal life of mice has already been studied as a suitable animal model resembling psychotic-like symptoms. Here, we investigated whether ketamine administration, at postnatal days 7, 9 and 11, might induce behavioural features able to mimic ASD typical symptoms in adult mice. To this aim, we developed a 4-days behavioural tests battery, including Marble Burying, Hole Board, Olfactory and Social tests, to assess repetitive and stereotyped behaviour, social deficits and anxiety-like symptoms. Moreover, by using this mouse model, we performed neurochemical and biomolecular analyses, quantifying neurotransmitters belonging to excitatory-inhibitory pathways, such as glutamate, glutamine and gamma-aminobutyric acid (GABA), as well as immune activation biomarkers related to ASD, such as CD11b and glial fibrillary acidic protein (GFAP), in the hippocampus and amygdala. Possible alterations in levels of brain-derived neurotrophic factor (BDNF) expression in the hippocampus and amygdala were also evaluated. Our results showed an increase in stereotyped behaviours, together with social impairments and anxiety-like behaviour in adult mice, receiving ketamine administration in early postnatal life. In addition, we found decreased BDNF and enhanced GFAP hippocampal expression levels, accompanied by elevations in glutamate amount, as well as reduction in GABA content in amygdala and hippocampus. In conclusion, early ketamine administration may represent a suitable animal model of ASD, exhibiting face validity to mimic specific ASD symptoms, such as social deficits, repetitive repertoire and anxiety-like behaviour.


Subject(s)
Autism Spectrum Disorder , Disease Models, Animal , Ketamine , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/genetics , Brain-Derived Neurotrophic Factor/metabolism , Glutamates , Ketamine/adverse effects , Mice , gamma-Aminobutyric Acid
6.
Biomolecules ; 11(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-34063630

ABSTRACT

The 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) is the most active compound of Boswellia serrata proposed for treating neurodegenerative disorders, including Alzheimer's disease (AD), characterized in its early phase by alteration in mood. Accordingly, we have previously demonstrated that an intracerebroventricular injection of soluble amyloid beta 1-42 (Aß) peptide evokes a depressive-like phenotype in rats. We tested the protective effects of AKBA in the mouse model of an Aß-induced depressive-like phenotype. We evaluated the depressive-like behavior by using the tail suspension test (TST) and the splash test (ST). Behavioral analyses were accompanied by neurochemical quantifications, such as glutamate (GLU), kynurenine (KYN) and monoamines, and by biochemical measurements, such as glial fibrillary acid protein (GFAP), CD11b and nuclear factor kappa B (NF-kB), in mice prefrontal cortex (PFC) and hippocampus (HIPP). AKBA prevented the depressive-like behaviors induced by Aß administration, since we recorded a reduction in latency to initiate self-care and total time spent to perform self-care in the ST and reduced time of immobility in the TST. Likewise, the increase in GLU and KYN levels in PFC and HIPP induced by the peptide injection were reverted by AKBA administration, as well as the displayed increase in levels of GFAP and NF-kB in both PFC and HIPP, but not in CD11b. Therefore, AKBA might represent a food supplement suitable as an adjuvant for therapy of depression in early-stage AD.


Subject(s)
Amyloid beta-Peptides/adverse effects , Antidepressive Agents/administration & dosage , Depression/drug therapy , Triterpenes/administration & dosage , Animals , Antidepressive Agents/pharmacology , Biomarkers/metabolism , Depression/chemically induced , Depression/metabolism , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Glutamic Acid/metabolism , Kynurenine/metabolism , Male , Mice , Treatment Outcome , Triterpenes/pharmacology
7.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917814

ABSTRACT

Polyunsaturated fatty acids (PUFA) are involved in brain disorders associated to amyloid beta (Aß) toxicity for which oxidative stress, neurochemical dysfunctions, and neuroinflammation are underlying mechanisms. Here, mechanisms through which lifelong exposure to n-3 PUFA-enriched or n-6/n-3 balanced diets could elicit a protective role in a rat model of Aß-induced toxicity were investigated. To this aim, we quantified hippocampal reactive oxygen species (ROS) amount, 8-hydroxy-2'-deoxyguanosine and interleukin-10 levels, NADPH oxidase (NOX) 1, NOX2, superoxide dismutase 1, and glutathione contents, as well as plasmatic malondialdehyde. Moreover, in the same experimental groups, we assessed tryptophan, serotonin, and its turnover, kynurenine, and noradrenaline amounts. Results showed increased hippocampal ROS and NOX2 levels, serotonin turnover, kynurenine, and noradrenaline contents in Aß-treated rats. Both n-6/n-3 balanced and n-3 PUFA enriched diets reduced ROS production, NOX1 and malondialdehyde levels, serotonin turnover, and kynurenine amount in Aß-injected rats, while increasing NOX2, superoxide dismutase 1, and serotonin contents. No differences in plasmatic coenzyme Q10, reduced glutathione (GSH) and tryptophan levels were detected among different experimental groups, whereas GSH + oxidized glutathione (GSSG) levels were increased in sham animals fed with n-3 PUFA enriched diet and in Aß-treated rats exposed to both n-6/n-3 balanced and n-3 enriched diets. In addition, Aß-induced decrease of interleukin-10 levels was prevented by n-6/n-3 PUFA balanced diet. N-3 PUFA enriched diet further increased interleukin-10 and 8-hydroxy-2'-deoxyguanosine levels. In conclusion, our data highlight the possible neuroprotective role of n-3 PUFA in perturbation of oxidative equilibrium induced by Aß-administration.

8.
Front Pharmacol ; 12: 799561, 2021.
Article in English | MEDLINE | ID: mdl-35046821

ABSTRACT

Alzheimer's disease (AD), one of the most widespread neurodegenerative disorder, is a fatal global burden for the elder population. Although many efforts have been made, the search of a curative therapy is still ongoing. Individuating phenotypic traits that might help in investigating treatment response is of growing interest in AD research. AD is a complex pathology characterized by many comorbidities, such as depression and increased susceptibility to pain perception, leading to postulate that these conditions may rely on common biological substrates yet to be determined. In order to investigate those biological determinants to be associable with phenotypic traits, we used the rat model of amyloid beta-induced toxicity. This established model of early phase of AD is obtained by the intracerebroventricular injection of soluble amyloid beta1-42 (Aß) peptide 7 days before performing experiments. In this model, we have previously reported increased immobility in the forced swimming test, reduced cortical serotonin levels and subtle alterations in the cognitive domain a depressive-like phenotype associated with subtle alteration in memory processes. In light of evaluating pain perception in this animal model, we performed two different behavioral tests commonly used, such as the paw pressure test and the cold plate test, to analyze mechanical hyperalgesia and thermal allodynia, respectively. Behavioural outcomes confirmed the memory impairment in the social recognition test and, compared to sham, Aß-injected rats showed an increased selective susceptibility to mechanical but not to thermal stimulus. Behavioural data were then corroborated by neurochemical and biochemical biomarker analyses either at central or peripheral level. Data showed that the peptide injection evoked a significant increase in hypothalamic glutamate, kynurenine and dopamine content, while serotonin levels were reduced. Plasma Cystatin-C, a cysteine protease, was increased while serotonin and melatonin levels were decreased in Aß-injected rats. Urinary levels paralleled plasma quantifications, indicating that Aß-induced deficits in pain perception, mood and cognitive domain may also depend on these biomarkers. In conclusion, in the present study, we demonstrated that this animal model can mimic several comorbid conditions typical of the early phase of AD. Therefore, in the perspective of generating novel therapeutic strategies relevant to precision medicine in AD, this animal model and the biomarkers evaluated herein may represent an advantageous approach.

9.
Front Neurosci ; 14: 590088, 2020.
Article in English | MEDLINE | ID: mdl-33250707

ABSTRACT

Early brain insult, interfering with its maturation, may result in psychotic-like disturbances in adult life. Redox dysfunctions and neuroinflammation contribute to long-term psychiatric consequences due to neurodevelopmental abnormalities. Here, we investigated the effects of early pharmacological modulation of the redox and inflammatory states, through celastrol, and indomethacin administration, on reactive oxygen species (ROS) amount, levels of malondialdehyde (MDA) and antioxidant enzymes (superoxide dismutase 1, SOD1, glutathione, GSH, and catalase, CAT), as well as of pro-inflammatory cytokines (tumor necrosis factor-alpha, TNF-α, interleukin-6, IL-6, and interleukin-1 beta, IL-1ß), in the prefrontal cortex of adult mice exposed to a neurotoxic insult, i.e. ketamine administration, in postnatal life. Early celastrol or indomethacin prevented ketamine-induced elevations in cortical ROS production. MDA levels in ketamine-treated mice, also administered with celastrol, were comparable with the control ones. Indomethacin also prevented the increase in lipid peroxidation following early ketamine administration. Whereas no significant differences were detected in SOD1, GSH, and CAT levels between ketamine and saline-administered mice, celastrol elevated the cortical amount of these antioxidant enzymes and the same effect was induced by indomethacin per se. Both celastrol and indomethacin prevented ketamine-induced enhancement in TNF-α and IL-1ß levels, however, they had no effects on increased IL-6 amount resulting from ketamine exposure in postnatal life. In conclusion, our data suggest that an early increase in cortical ROS scavenging and reduction of lipid peroxidation, via the enhancement of antioxidant defense, together with inhibition of neuroinflammation, may represent a therapeutic opportunity against psychotic-like disturbances resulting, later in life, from the effects of a neurotoxic insult on the developing brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...