Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 24(8)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-36010733

ABSTRACT

Breakdowns of two-zone random networks of the Erdos-Rényi type are investigated. They are used as mathematical models for understanding the incompleteness of the tumor network breakdown under radiochemotherapy, an incompleteness that may result from a tumor's physical and/or chemical heterogeneity. Mathematically, having a reduced node removal probability in the network's inner zone hampers the network's breakdown. The latter is described quantitatively as a function of reduction in the inner zone's removal probability, where the network breakdown is described in terms of the largest remaining clusters and their size distributions. The effects on the efficacy of radiochemotherapy due to the tumor micro-environment (TME)'s chemical make-up, and its heterogeneity, are discussed, with the goal of using such TME chemical heterogeneity imaging to inform precision oncology.

2.
Entropy (Basel) ; 24(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35052112

ABSTRACT

Tumor hypoxia was discovered a century ago, and the interference of hypoxia with all radiotherapies is well known. Here, we demonstrate the potentially extreme effects of hypoxia heterogeneity on radiotherapy and combination radiochemotherapy. We observe that there is a decrease in hypoxia from tumor periphery to tumor center, due to oxygen diffusion, resulting in a gradient of radiative cell-kill probability, mathematically expressed as a probability gradient of occupied space removal. The radiotherapy-induced break-up of the tumor/TME network is modeled by the physics model of inverse percolation in a shell-like medium, using Monte Carlo simulations. The different shells now have different probabilities of space removal, spanning from higher probability in the periphery to lower probability in the center of the tumor. Mathematical results regarding the variability of the critical percolation concentration show an increase in the critical threshold with the applied increase in the probability of space removal. Such an observation will have an important medical implication: a much larger than expected radiation dose is needed for a tumor breakup enabling successful follow-up chemotherapy. Information on the TME's hypoxia heterogeneity, as shown here with the numerical percolation model, may enable personalized precision radiation oncology therapy.

3.
Physica A ; 590: 126746, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34898823

ABSTRACT

Infectious diseases, such as the current COVID-19, have a huge economic and societal impact. The ability to model its transmission characteristics is critical to minimize its impact. In fact, predicting how fast an infection is spreading could be a major factor in deciding on the severity, extent and strictness of the applied mitigation measures, such as the recent lockdowns. Even though modelling epidemics is a well studied subject, usually models do not include quarantine or other social measures, such as those imposed in the recent pandemic. The current work builds upon a recent paper by Maier and Brockmann (2020), where a compartmental SIRX model was implemented. That model included social or individual behavioural changes during quarantine, by introducing state X , in which symptomatic quarantined individuals are not transmitting the infection anymore, and described well the transmission in the initial stages of the infection. The results of the model were applied to real data from several provinces in China, quite successfully. In our approach we use a Monte-Carlo simulation model on networks. Individuals are network nodes and the links are their contacts. We use a spreading mechanism from the initially infected nodes to their nearest neighbours, as has been done previously. Initially, we find the values of the rate constants (parameters) the same way as in Maier and Brockmann (2020) for the confirmed cases of a country, on a daily basis, as given by the Johns Hopkins University. We then use different types of networks (random Erdos-Rényi, Small World, and Barabási-Albert Scale-Free) with various characteristics in an effort to find the best fit with the real data for the same geographical regions as reported in Maier and Brockmann (2020). Our simulations show that the best fit comes with the Erdos-Rényi random networks. We then apply this method to several other countries, both for large-size countries, and small size ones. In all cases investigated we find the same result, i.e. best agreement for the evolution of the pandemic with time is for the Erdos-Rényi networks. Furthermore, our results indicate that the best fit occurs for a random network with an average degree of the order of 〈 k 〉 ≈ 10-25, for all countries tested. Scale Free and Small World networks fail to fit the real data convincingly.

SELECTION OF CITATIONS
SEARCH DETAIL
...