Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Redox Biol ; 72: 103152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593630

ABSTRACT

Cellular magnetic field effects are assumed to base on coherent singlet-triplet interconversion of radical pairs that are sensitive to applied radiofrequency (RF) and weak magnetic fields (WEMFs), known as radical pair mechanism (RPM). As a leading model, the RPM explains how quantum effects can influence biochemical and cellular signalling. Consequently, radical pairs generate reactive oxygen species (ROS) that link the RPM to redox processes, such as the response to hypoxia and the circadian clock. Therapeutic nuclear magnetic resonance (tNMR) occupies a unique position in the RPM paradigm because of the used frequencies, which are far below the range of 0.1-100 MHz postulated for the RPM to occur. Nonetheless, tNMR was shown to induce RPM like effects, such as increased extracellular H2O2 levels and altered cellular bioenergetics. In this study we compared the impact of tNMR and intermittent hypoxia on the circadian clock, as well as the role of superoxide in tNMR induced ROS partitioning. We show that both, tNMR and intermittent hypoxia, exert on/off effects on cellular clocks that are dependent on the time of application (day versus night). In addition, our data provide further evidence that superoxide plays a central role in magnetic signal transduction. tNMR used in combination with scavengers, such as Vitamin C, led to strong ROS product redistributions. This discovery might represent the first indication of radical triads in biological systems.


Subject(s)
Circadian Clocks , Magnetic Fields , Superoxides , Superoxides/metabolism , Animals , Reactive Oxygen Species/metabolism , Magnetic Resonance Spectroscopy/methods , Humans , Cell Hypoxia , Oxidation-Reduction , Mice
2.
Pflugers Arch ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38396259

ABSTRACT

Transmembrane prolyl 4-hydroxylase (P4H-TM) is an enigmatic enzyme whose cellular function and primary substrate remain to be identified. Its loss-of-function mutations cause a severe neurological HIDEA syndrome with hypotonia, intellectual disability, dysautonomia and hypoventilation. Previously, P4H-TM deficiency in mice was associated with reduced atherogenesis and lower serum triglyceride levels. Here, we characterized the glucose and lipid metabolism of P4h-tm-/- mice in physiological and tissue analyses. P4h-tm-/- mice showed variations in 24-h oscillations of energy expenditure, VO2 and VCO2 and locomotor activity compared to wild-type (WT) mice. Their rearing activity was reduced, and they showed significant muscle weakness and compromised coordination. Sedated P4h-tm-/- mice had better glucose tolerance, lower fasting insulin levels, higher fasting lactate levels and lower fasting free fatty acid levels compared to WT. These alterations were not present in conscious P4h-tm-/- mice. Fasted P4h-tm-/- mice presented with faster hepatic glycogenolysis. The respiratory rate of conscious P4h-tm-/- mice was significantly lower compared to the WT, the decrease being further exacerbated by sedation and associated with acidosis and a reduced ventilatory response to both hypoxia and hypercapnia. P4H-TM deficiency in mice is associated with alterations in whole-body energy metabolism, day-night rhythm of activity, glucose homeostasis and neuromuscular and respiratory functions. Although the underlying mechanism(s) are not yet fully understood, the phenotype appears to have neurological origins, controlled by brain and central nervous system circuits. The phenotype of P4h-tm-/- mice recapitulates some of the symptoms of HIDEA patients, making this mouse model a valuable tool to study and develop tailored therapies.

3.
FEBS Lett ; 597(12): 1651-1666, 2023 06.
Article in English | MEDLINE | ID: mdl-37235702

ABSTRACT

Human phytanoyl-CoA dioxygenase domain-containing 1 (PHYHD1) is a 2-oxoglutarate (2OG)-dependent dioxygenase implicated in Alzheimer's disease, some cancers, and immune cell functions. The substrate, kinetic and inhibitory properties, function and subcellular localization of PHYHD1 are unknown. We used recombinant expression and enzymatic, biochemical, biophysical, cellular and microscopic assays for their determination. The apparent Km values of PHYHD1 for 2OG, Fe2+ and O2 were 27, 6 and > 200 µm, respectively. PHYHD1 activity was tested in the presence of 2OG analogues, and it was found to be inhibited by succinate and fumarate but not R-2-hydroxyglutarate, whereas citrate acted as an allosteric activator. PHYHD1 bound mRNA, but its catalytic activity was inhibited upon interaction. PHYHD1 was found both in the nucleus and cytoplasm. Interactome analyses linked PHYHD1 to cell division and RNA metabolism, while phenotype analyses linked it to carbohydrate metabolism. Thus, PHYHD1 is a potential novel oxygen sensor regulated by mRNA and citrate.


Subject(s)
Dioxygenases , RNA , Humans , RNA/metabolism , Dioxygenases/metabolism , Carbohydrate Metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Citrates , Oxygen
4.
Redox Biol ; 61: 102644, 2023 05.
Article in English | MEDLINE | ID: mdl-36867945

ABSTRACT

The NRF2 pathway is frequently activated in various cancer types, yet a comprehensive analysis of its effects across different malignancies is currently lacking. We developed a NRF2 activity metric and utilized it to conduct a pan-cancer analysis of oncogenic NRF2 signaling. We identified an immunoevasive phenotype where high NRF2 activity is associated with low interferon-gamma (IFNγ), HLA-I expression and T cell and macrophage infiltration in squamous malignancies of the lung, head and neck area, cervix and esophagus. Squamous NRF2 overactive tumors comprise a molecular phenotype with SOX2/TP63 amplification, TP53 mutation and CDKN2A loss. These immune cold NRF2 hyperactive diseases are associated with upregulation of immunomodulatory NAMPT, WNT5A, SPP1, SLC7A11, SLC2A1 and PD-L1. Based on our functional genomics analyses, these genes represent candidate NRF2 targets, suggesting direct modulation of the tumor immune milieu. Single-cell mRNA data shows that cancer cells of this subtype exhibit decreased expression of IFNγ responsive ligands, and increased expression of immunosuppressive ligands NAMPT, SPP1 and WNT5A that mediate signaling in intercellular crosstalk. In addition, we discovered that the negative relationship of NRF2 and immune cells are explained by stromal populations of lung squamous cell carcinoma, and this effect spans multiple squamous malignancies based on our molecular subtyping and deconvolution data.


Subject(s)
Carcinoma, Squamous Cell , NF-E2-Related Factor 2 , Female , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Ligands , Lung Neoplasms/genetics , NF-E2-Related Factor 2/metabolism
5.
J Biol Chem ; 298(8): 102222, 2022 08.
Article in English | MEDLINE | ID: mdl-35787374

ABSTRACT

Hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs 1-3) are druggable targets in renal anemia, where pan-HIF-P4H inhibitors induce an erythropoietic response. Preclinical data suggest that HIF-P4Hs could also be therapeutic targets for treating metabolic dysfunction, although the contributions of HIF-P4H isoenzymes in various tissues to the metabolic phenotype are inadequately understood. Here, we used mouse lines that were gene-deficient for HIF-P4Hs 1 to 3 and two preclinical pan-HIF-P4H inhibitors to study the contributions of these isoenzymes to the anthropometric and metabolic outcome and HIF response. We show both inhibitors induced a HIF response in wildtype white adipose tissue (WAT), liver, and skeletal muscle and alleviated metabolic dysfunction during a 6-week treatment period, but they did not alter healthy metabolism. Our data indicate that HIF-P4H-1 contributed especially to skeletal muscle and WAT metabolism and that its loss lowered body weight and serum cholesterol levels upon aging. In addition, we found HIF-P4H-3 had effects on the liver and WAT and its loss increased body weight, adiposity, liver weight and triglyceride levels, WAT inflammation, and cholesterol levels and resulted in hyperglycemia and insulin resistance, especially during aging. Finally, we demonstrate HIF-P4H-2 affected all tissues studied; its inhibition lowered body and liver weight and serum cholesterol levels and improved glucose tolerance. We found very few HIF target metabolic mRNAs were regulated by the inhibition of three isoenzymes, thus suggesting a potential for selective therapeutic tractability. Altogether, these data provide specifications for the future development of HIF-P4H inhibitors for the treatment of metabolic diseases.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases , Isoenzymes , Adipose Tissue, White/metabolism , Aging/metabolism , Animals , Body Weight , Cholesterol/blood , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Insulin Resistance , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Liver/metabolism , Mice , Muscle, Skeletal/metabolism , Obesity/metabolism
6.
Physiol Rep ; 10(9): e15302, 2022 05.
Article in English | MEDLINE | ID: mdl-35535947

ABSTRACT

Maternal overweight/obesity contributes significantly to the development of gestational diabetes, which causes risks to both mother and fetus and is increasing sharply in prevalence worldwide. Since hypoxia reprograms energy metabolism and can alleviate weight gain, adiposity, insulin resistance (IR), and dyslipidemia, we set out to study the potential of sustained reduced ambient oxygen tension (15% O2 ) during pregnancy for alleviating the detrimental effects of diet-induced IR in C57Bl/6N mice, taking normal chow-fed and normoxia (21% O2 ) groups as controls. Our data show that hypoxic intervention reduced maternal weight gain, adiposity, and adipose tissue inflammation, and ameliorated maternal glucose metabolism and IR during gestation in diet-induced IR relative to normoxia. Where diet-induced IR reduced maternal hemoglobin and increased serum erythropoietin levels, hypoxic intervention compensated for these changes. Diet-induced IR reduced fetal growth in normoxia, and even more in hypoxia. Hypoxic intervention reduced liver weight gain during pregnancy in the dams with diet-induced IR, maternal liver weight being positively associated with embryo number. In case of diet-induced IR, the hypoxic intervention compromised placental energy metabolism and vascularization and increased end-pregnancy placental necrosis. Altogether, these data show that although hypoxic intervention mediates several beneficial effects on maternal metabolism, the combination of it with diet-induced IR is even more detrimental to the placental and fetal outcome than diet-induced IR alone.


Subject(s)
Insulin Resistance , Obesity, Maternal , Animals , Diet, High-Fat/adverse effects , Female , Humans , Hypoxia/metabolism , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Placenta/metabolism , Pregnancy , Weight Gain
7.
J Mol Cell Cardiol ; 164: 148-155, 2022 03.
Article in English | MEDLINE | ID: mdl-34919895

ABSTRACT

AIMS: We have previously demonstrated protection against obesity, metabolic dysfunction, atherosclerosis and cardiac ischemia in a hypoxia-inducible factor (HIF) prolyl 4-hydroxylase-2 (Hif-p4h-2) deficient mouse line, attributing these protective effects to activation of the hypoxia response pathway in a normoxic environment. We intended here to find out whether the Hif-p4h-2 deficiency affects the cardiac health of these mice upon aging. METHODS AND RESULTS: When the Hif-p4h-2 deficient mice and their wild-type littermates were monitored during normal aging, the Hif-p4h-2 deficient mice had better preserved diastolic function than the wild type at one year of age and less cardiomyocyte hypertrophy at two years. On the mRNA level, downregulation of hypertrophy-associated genes was detected and shown to be associated with upregulation of Notch signaling, and especially of the Notch target gene and transcriptional repressor Hairy and enhancer-of-split-related basic helix-loop-helix (Hey2). Blocking of Notch signaling in cardiomyocytes isolated from Hif-p4h-2 deficient mice with a gamma-secretase inhibitor led to upregulation of the hypertrophy-associated genes. Also, targeting Hey2 in isolated wild-type rat neonatal cardiomyocytes with siRNA led to upregulation of hypertrophic genes and increased leucine incorporation indicative of increased protein synthesis and hypertrophy. Finally, oral treatment of wild-type mice with a small molecule inhibitor of HIF-P4Hs phenocopied the effects of Hif-p4h-2 deficiency with less cardiomyocyte hypertrophy, upregulation of Hey2 and downregulation of the hypertrophy-associated genes. CONCLUSIONS: These results indicate that activation of the hypoxia response pathway upregulates Notch signaling and its target Hey2 resulting in transcriptional repression of hypertrophy-associated genes and less cardiomyocyte hypertrophy. This is eventually associated with better preserved cardiac function upon aging. Activation of the hypoxia response pathway thus has therapeutic potential for combating age-induced cardiac hypertrophy.


Subject(s)
Cardiomegaly , Hypoxia , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mice , Rats
8.
Sci Adv ; 7(29)2021 07.
Article in English | MEDLINE | ID: mdl-34261659

ABSTRACT

Activation of the hypoxia-inducible factor (HIF) pathway reprograms energy metabolism. Hemoglobin (Hb) is the main carrier of oxygen. Using its normal variation as a surrogate measure for hypoxia, we explored whether lower Hb levels could lead to healthier metabolic profiles in mice and humans (n = 7175) and used Mendelian randomization (MR) to evaluate potential causality (n = 173,480). The results showed evidence for lower Hb levels being associated with lower body mass index, better glucose tolerance and other metabolic profiles, lower inflammatory load, and blood pressure. Expression of the key HIF target genes SLC2A4 and Slc2a1 in skeletal muscle and adipose tissue, respectively, associated with systolic blood pressure in MR analyses and body weight, liver weight, and adiposity in mice. Last, manipulation of murine Hb levels mediated changes to key metabolic parameters. In conclusion, low-end normal Hb levels may be favorable for metabolic health involving mild chronic activation of the HIF response.


Subject(s)
Hypoxia , Liver , Animals , Hemoglobins/genetics , Hemoglobins/metabolism , Hypoxia/genetics , Liver/metabolism , Metabolome , Mice , Oxygen/metabolism
10.
Redox Biol ; 37: 101750, 2020 10.
Article in English | MEDLINE | ID: mdl-33059314

ABSTRACT

The upstream stimulatory factor 2 (USF2) is a transcription factor implicated in several cellular processes and among them, tumor development seems to stand out. However, the data with respect to the role of USF2 in tumor development are conflicting suggesting that it acts either as tumor promoter or suppressor. Here we show that absence of USF2 promotes proliferation and migration. Thereby, we reveal a previously unknown function of USF2 in mitochondrial homeostasis. Mechanistically, we demonstrate that deficiency of USF2 promotes survival by inducing mitophagy in a ROS-sensitive manner by activating both ERK1/2 and AKT. Altogether, this study supports USF2's function as tumor suppressor and highlights its novel role for mitochondrial function and energy homeostasis thereby linking USF2 to conditions such as insulin resistance, type-2 diabetes mellitus, and the metabolic syndrome.


Subject(s)
Gene Expression Regulation , Mitophagy , Cell Proliferation , Oxidation-Reduction , Promoter Regions, Genetic
11.
J Mol Med (Berl) ; 98(5): 719-731, 2020 05.
Article in English | MEDLINE | ID: mdl-32296880

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) parallels the global obesity epidemic with unmet therapeutic needs. We investigated whether inhibition of hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2), a key cellular oxygen sensor whose inhibition stabilizes HIF, would protect from NAFLD by subjecting HIF-P4H-2-deficient (Hif-p4h-2gt/gt) mice to a high-fat, high-fructose (HFHF) or high-fat, methionine-choline-deficient (HF-MCD) diet. On both diets, the Hif-p4h-2gt/gt mice gained less weight and had less white adipose tissue (WAT) and its inflammation, lower serum cholesterol levels, and lighter livers with less steatosis and lower serum ALT levels than the wild type (WT). The intake of fructose in majority of the Hif-p4h-2gt/gt tissues, including the liver, was 15-35% less than in the WT. We found upregulation of the key fructose transporter and metabolizing enzyme mRNAs, Slc2a2, Khka, and Khkc, and higher ketohexokinase activity in the Hif-p4h-2gt/gt small intestine relative to the WT, suggesting enhanced metabolism of fructose in the former. On the HF-MCD diet, the Hif-p4h-2gt/gt mice showed more browning of the WAT and increased thermogenesis. A pharmacological pan-HIF-P4H inhibitor protected WT mice on both diets against obesity, metabolic dysfunction, and liver damage. These data suggest that HIF-P4H-2 inhibition could be studied as a novel, comprehensive treatment strategy for NAFLD. KEY MESSAGES: • HIF-P4H-2 inhibition enhances intestinal fructose metabolism protecting the liver. • HIF-P4H-2 inhibition downregulates hepatic lipogenesis. • Induced browning of WAT and increased thermogenesis can also mediate protection. • HIF-P4H-2 inhibition offers a novel, comprehensive treatment strategy for NAFLD.


Subject(s)
Carbohydrate Metabolism , Fructose/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Thermogenesis , Animals , Biomarkers , Carbohydrate Metabolism/genetics , Diet , Disease Models, Animal , Disease Susceptibility , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Lipid Metabolism , Lipids/blood , Liver/metabolism , Liver/pathology , Mice , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/pathology , Thermogenesis/genetics
12.
Sci Rep ; 10(1): 4260, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32123262

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
FASEB J ; 34(4): 5590-5609, 2020 04.
Article in English | MEDLINE | ID: mdl-32100354

ABSTRACT

Hypoxia inactivates hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs), which stabilize HIF and upregulate genes to restore tissue oxygenation. HIF-P4Hs can also be inhibited by small molecules studied in clinical trials for renal anemia. Knowledge of systemic long-term inactivation of HIF-P4Hs is limited but crucial, since HIF overexpression is associated with cancers. We aimed to determine the effects of systemic genetic inhibition of the most abundant isoenzyme HIF prolyl 4-hydroxylase-2 (HIF-P4H-2)/PHD2/EglN1 on life span and tissue homeostasis in aged mice. Our data showed no difference between wild-type and HIF-P4H-2-deficient mice in the average age reached. There were several differences, however, in the primary causes of death and comorbidities, the HIF-P4H-2-deficient mice having less inflammation, liver diseases, including cancer, and myocardial infarctions, and not developing anemia. No increased cancer incidence was observed due to HIF-P4H-2-deficiency. These data suggest that chronic inactivation of HIF-P4H-2 is not harmful but rather improves the quality of life in senescence.


Subject(s)
Carcinoma, Hepatocellular/prevention & control , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Inflammation/prevention & control , Kidney Diseases/prevention & control , Liver Diseases/prevention & control , Liver Neoplasms, Experimental/prevention & control , Animals , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Female , Inflammation/etiology , Inflammation/pathology , Kidney Diseases/etiology , Kidney Diseases/pathology , Liver Diseases/etiology , Liver Diseases/pathology , Liver Neoplasms, Experimental/etiology , Liver Neoplasms, Experimental/pathology , Longevity , Male , Mice , Mice, Knockout
14.
Cancer Res ; 79(16): 4042-4056, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31142511

ABSTRACT

The EGFR adaptor protein, CIN85, has been shown to promote breast cancer malignancy and hypoxia-inducible factor (HIF) stability. However, the mechanisms underlying cancer promotion remain ill defined. Here we show that CIN85 is a novel binding partner of the main HIF-prolyl hydroxylase, PHD2, but not of PHD1 or PHD3. Mechanistically, the N-terminal SRC homology 3 domains of CIN85 interacted with the proline-arginine-rich region within the N-terminus of PHD2, thereby inhibiting PHD2 activity and HIF degradation. This activity is essential in vivo, as specific loss of the CIN85-PHD2 interaction in CRISPR/Cas9-edited cells affected growth and migration properties, as well as tumor growth in mice. Overall, we discovered a previously unrecognized tumor growth checkpoint that is regulated by CIN85-PHD2 and uncovered an essential survival function in tumor cells by linking growth factor adaptors with hypoxia signaling. SIGNIFICANCE: This study provides unprecedented evidence for an oxygen-independent mechanism of PHD2 regulation that has important implications in cancer cell survival. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/16/4042/F1.large.jpg.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Triple Negative Breast Neoplasms/pathology , Adaptor Proteins, Signal Transducing/genetics , Animals , Binding Sites , Cell Line, Tumor , Female , HEK293 Cells , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Mice, Nude , Protein Interaction Domains and Motifs , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
15.
Neuropharmacology ; 153: 63-72, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31029587

ABSTRACT

HIF prolyl 4-hydroxylases (HIF-P4Hs, also known as PHDs and EGLNs) are crucial enzymes that modulate the hypoxia inducible factor (HIF) response and help to maintain cellular oxygen homeostasis. This function is especially well-known for cytoplasmic or nuclear enzymes HIF-P4H-1-3 (PHDs 1-3, EGLNs 2, 1 and 3, respectively), but the physiological role is still obscure for a fourth suggested HIF-P4H, P4H-TM that is a transmembrane protein and resides in the endoplasmic reticulum. Recently however, both experimental and clinical evidence of the P4H-TM involvement in CNS physiology has emerged. In this study, we first investigated the expression pattern of P4H-TM in the mouse brain and found a remarkably selective abundance in brains areas that are involved in social behaviors and anxiety including amygdala, lateral septum and bed nucleus of stria terminalis. Next, we performed behavioral assays in P4h-tm-/- mice to investigate a possible phenotype associated to these brain areas. In locomotor activity tests, we found that P4h-tm-/- mice were significantly more active than their wild-type (WT) littermate mice, and habituation to test environment did not abolish this effect. Instead, spatial learning and memory seemed normal in P4h-tm-/- mice as assessed by Morris swim task. In several tests assessing anxiety and fear responses, P4h-tm-/- mice showed distinct courageousness, and they presented increased interaction towards fellow mice in social behavior tests. Most strikingly, P4h-tm-/- mice practically lacked behavioral despair response, a surrogate marker of depression, in forced swim and tail suspension tests. Instead, mutant mice of all other Hif-p4h isoforms lacked such a behavioral phenotype. In summary, this study presents a remarkable anatomy-physiology association between the brain expression of P4H-TM and the behavioral phenotype in P4h-tm-/- mice. Future studies will reveal whether P4H-TM may serve as a novel target for anti-depressant and anti-anxiety pharmacotherapy.


Subject(s)
Anxiety/genetics , Anxiety/psychology , Fear/physiology , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Loss of Function Mutation/genetics , Social Behavior , Animals , Anxiety/metabolism , Fear/psychology , Female , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Locomotion/physiology , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout
16.
Cancers (Basel) ; 11(4)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013770

ABSTRACT

The transcription factor USF2 is supposed to have an important role in tumor development. However, the regulatory mechanisms contributing to the function of USF2 are largely unknown. Cyclin-dependent kinase 5 (CDK5) seems to be of importance since high levels of CDK5 were found in different cancers associated with high USF2 expression. Here, we identified USF2 as a phosphorylation target of CDK5. USF2 is phosphorylated by CDK5 at two serine residues, serine 155 and serine 222. Further, phosphorylation of USF2 at these residues was shown to stabilize the protein and to regulate cellular growth and migration. Altogether, these results delineate the importance of the CDK5-USF2 interplay in cancer cells.

17.
Redox Biol ; 24: 101182, 2019 06.
Article in English | MEDLINE | ID: mdl-30959459

ABSTRACT

Glycosylation, a common modification of cellular proteins and lipids, is often altered in diseases and pathophysiological states such as hypoxia, yet the underlying molecular causes remain poorly understood. By utilizing lectin microarray glycan profiling, Golgi pH and redox screens, we show here that hypoxia inhibits terminal sialylation of N- and O-linked glycans in a HIF- independent manner by lowering Golgi oxidative potential. This redox state change was accompanied by loss of two surface-exposed disulfide bonds in the catalytic domain of the α-2,6-sialyltransferase (ST6Gal-I) and its ability to functionally interact with B4GalT-I, an enzyme adding the preceding galactose to complex N-glycans. Mutagenesis of selected cysteine residues in ST6Gal-I mimicked these effects, and also rendered the enzyme inactive. Cells expressing the inactive mutant, but not those expressing the wild type ST6Gal-I, were able to proliferate and migrate normally, supporting the view that inactivation of the ST6Gal-I help cells to adapt to hypoxic environment. Structure comparisons revealed similar disulfide bonds also in ST3Gal-I, suggesting that this O-glycan and glycolipid modifying sialyltransferase is also sensitive to hypoxia and thereby contribute to attenuated sialylation of O-linked glycans in hypoxic cells. Collectively, these findings unveil a previously unknown redox switch in the Golgi apparatus that is responsible for the catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I.


Subject(s)
Galactosyltransferases/metabolism , Golgi Apparatus/metabolism , Oxidation-Reduction , Sialyltransferases/metabolism , Animals , Catalysis , Cell Line , Cell Movement , Cell Proliferation , Disulfides/metabolism , Galactosyltransferases/chemistry , Humans , Hydrogen-Ion Concentration , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism , Models, Molecular , Molecular Conformation , Polysaccharides/metabolism , Sialyltransferases/chemistry , beta-D-Galactoside alpha 2-6-Sialyltransferase
18.
iScience ; 13: 284-304, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30875610

ABSTRACT

The circadian clock and the hypoxia-signaling pathway are regulated by an integrated interplay of positive and negative feedback limbs that incorporate energy homeostasis and carcinogenesis. We show that the negative circadian regulator CRY1 is also a negative regulator of hypoxia-inducible factor (HIF). Mechanistically, CRY1 interacts with the basic-helix-loop-helix domain of HIF-1α via its tail region. Subsequently, CRY1 reduces HIF-1α half-life and binding of HIFs to target gene promoters. This appeared to be CRY1 specific because genetic disruption of CRY1, but not CRY2, affected the hypoxia response. Furthermore, CRY1 deficiency could induce cellular HIF levels, proliferation, and migration, which could be reversed by CRISPR/Cas9- or short hairpin RNA-mediated HIF knockout. Altogether, our study provides a mechanistic explanation for genetic association studies linking a disruption of the circadian clock with hypoxia-associated processes such as carcinogenesis.

19.
Redox Biol ; 22: 101145, 2019 04.
Article in English | MEDLINE | ID: mdl-30802717

ABSTRACT

Alcoholic fatty liver disease (AFLD) is a growing health problem for which no targeted therapy is available. We set out to study whether systemic inactivation of the main hypoxia-inducible factor prolyl 4-hydroxylase, HIF-P4H-2 (PHD2/EglN1), whose inactivation has been associated with protection against metabolic dysfunction, could ameliorate it. HIF-P4H-2-deficient and wild-type (WT) mice or HIF-P4H inhibitor-treated WT mice were subjected to an ethanol diet for 3-4 weeks and their metabolic health, liver and white adipose tissue (WAT) were analyzed. Primary hepatocytes from the mice were used to study cellular ethanol metabolism. The HIF-P4H-2-deficient mice retained a healthier metabolic profile, including less adiposity, better lipoprotein profile and restored insulin sensitivity, while on the ethanol diet than the WT. They also demonstrated protection from alcohol-induced steatosis and liver damage and had less WAT inflammation. In liver and WAT the expression of the key lipogenic and adipocytokine mRNAs, such as Fas and Ccl2, were downregulated, respectively. The upregulation of metabolic and antioxidant hypoxia-inducible factor (HIF) target genes, such as Slcs 16a1 and 16a3 and Gclc, respectively, and a higher catalytic activity of ALDH2 in the HIF-P4H-2-deficient hepatocytes improved handling of the toxic ethanol metabolites and oxidative stress. Pharmacological HIF-P4H inhibition in the WT mice phenocopied the protection against AFLD. Our data show that global genetic inactivation of HIF-P4H-2 and pharmacological HIF-P4H inhibition can protect mice from alcohol-induced steatosis and liver injury, suggesting that HIF-P4H inhibitors, now in clinical trials for renal anemia, could also be studied in randomized clinical trials for treatment of AFLD.


Subject(s)
Fatty Liver, Alcoholic/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Animals , Biomarkers , Blood Glucose , Cell Line , Disease Models, Animal , Enzyme Activation , Fatty Liver, Alcoholic/etiology , Fatty Liver, Alcoholic/pathology , Female , Gene Expression , Hepatocytes/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Insulins/metabolism , Lipid Metabolism , Liver/metabolism , Mice , Mice, Transgenic , Oxidative Stress , Reactive Oxygen Species/metabolism
20.
Sci Rep ; 8(1): 13583, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30206264

ABSTRACT

Hypoxia of residence at high altitude (>2500 m) decreases birth weight. Lower birth weight associates with infant mortality and morbidity and increased susceptibility to later-in-life cardiovascular and metabolic diseases. We sought to determine the effects of hypoxia on maternal glucose and lipid metabolism and their contributions to fetal weight. C57BL6/NCrl mice, housed throughout gestation in normobaric hypoxia (15% oxygen) or normoxia, were studied at mid (E9.5) or late gestation (E17.5). Fetal weight at E17.5 was 7% lower under hypoxia than normoxia. The hypoxic compared with normoxic dams had ~20% less gonadal white adipose tissue at mid and late gestation. The hypoxic dams had better glucose tolerance and insulin sensitivity compared with normoxic dams and failed to develop insulin resistance in late gestation. They also had increased glucagon levels. Glucose uptake to most maternal tissues was ~2-fold greater in the hypoxic than normoxic dams. The alterations in maternal metabolism in hypoxia were associated with upregulation of hypoxia-inducible factor (HIF) target genes that serve, in turn, to increase glycolytic metabolism. We conclude that environmental hypoxia alters maternal metabolism by upregulating the HIF-pathway, and suggest that interventions that antagonize such changes in metabolism in high-altitude pregnancy may be helpful for preserving fetal growth.


Subject(s)
Adipose Tissue, White/metabolism , Fetal Development/genetics , Glucose/metabolism , Glycolysis/genetics , Hypoxia/metabolism , Lipid Metabolism/genetics , Animals , Birth Weight , Embryo, Mammalian , Female , Fetus , Gene Expression Regulation , Gestational Age , Glucagon/metabolism , Glucose Tolerance Test , Hypoxia/genetics , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Inbred C57BL , Ovary/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...