Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38895470

ABSTRACT

Numerous studies have shown that neuronal representations in sensory pathways are far from static but are instead strongly shaped by the complex properties of the sensory inputs they receive. Adaptation dynamically shapes the neural signaling that underlies our perception of the world, yet remains poorly understood. We investigated rapid adaptation across timescales from hundreds of milliseconds to seconds through simultaneous multi-electrode recordings from the ventro-posteromedial nucleus of the thalamus (VPm) and layer 4 of the primary somatosensory cortex (S1) in anesthetized mice in response to controlled, persistent whisker stimulation. Observations in VPm and S1 reveal a degree of adaptation that progresses through the pathway. Signatures of two distinct timescales of rapid adaptation in the firing rates of both thalamic and cortical neuronal populations were revealed, also reflected in the synchrony of the thalamic population and in the thalamocortical synaptic efficacy that was measured in putatively monosynaptically connected thalamocortical pairs. Controlled optogenetic activation of VPm further demonstrated that the longer timescale adaptation observed in S1 is likely inherited from slow decreases in thalamic firing rate and synchrony. Despite the degraded sensory responses, adaptation resulted in a shift in coding strategy that favors theoretical discrimination over detection across the observed timescales of adaptation. Overall, although multiple mechanisms contribute to rapid adaptation at distinct timescales, they support a unifying framework on the role of adaptation in sensory processing.

2.
Nat Commun ; 15(1): 3529, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664415

ABSTRACT

The feedback projections from cortical layer 6 (L6CT) to the sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventral posteromedial nucleus of the thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.


Subject(s)
Optogenetics , Somatosensory Cortex , Thalamus , Vibrissae , Wakefulness , Animals , Wakefulness/physiology , Somatosensory Cortex/physiology , Mice , Thalamus/physiology , Vibrissae/physiology , Neurons/physiology , Male , Neural Pathways/physiology , Ventral Thalamic Nuclei/physiology , Action Potentials/physiology , Female , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...