Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 550: 321-329, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26820935

ABSTRACT

Human exposures to arsenic (As) through different pathways (dietary and non-dietary) are considered to be one of the primary worldwide environmental health risks to humans. This study was conducted to investigate the presence of As in soil and vegetable samples collected from agricultural lands located in selected southern districts of Khyber Pakhtunkhwa (KPK) Province, Pakistan. We examined the concentrations of total arsenic (TAs), organic species of As such as monomethylarsonic acid (MMA) and dimethylarsonic acid (DMA), and inorganic species including arsenite (AsIII) and arsenate (AsV) in both soil and vegetables. The data were used to determine several parameters to evaluate human health risk, including bioconcentration factor (BCF) from soil to plant, average daily intake (ADI), health risk index (HRI), incremental lifetime cancer risk (ILTCR), and hazard quotient (HQ). The total As concentration in soil samples of the five districts ranged from 3.0-3.9mgkg(-1), exhibiting minimal variations from site to site. The mean As concentration in edible portions of vegetable samples ranged from 0.03-1.38mgkg(-1). It was observed that As concentrations in 75% of the vegetable samples exceeded the safe maximum allowable limit (0.1mgkg(-1)) set by WHO/FAO. The highest value of ADI for As was measured for Momordica charantia, while the lowest was for Allium chinense. The results of this study revealed minimal health risk (HI<1) associated with consumption of vegetables for the local inhabitants. The ILTCR values for inorganic As indicated a minimal potential cancer risk through ingestion of vegetables. In addition, the HQ values for total As were <1, indicating minimal non-cancer risk.


Subject(s)
Arsenic/analysis , Environmental Exposure/statistics & numerical data , Food Contamination/statistics & numerical data , Neoplasms/epidemiology , Soil Pollutants/analysis , Vegetables/chemistry , Agriculture , Diet/statistics & numerical data , Humans , Pakistan/epidemiology , Risk Assessment
2.
Environ Sci Pollut Res Int ; 23(3): 2381-90, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26411451

ABSTRACT

The amendment of contaminated soil with organic materials is considered to be an environmentally friendly technique to immobilize heavy metal(loid)s and minimize their subsequent bioaccumulation in plants. This study focuses on the effects of different amendment techniques, such as the use of activated carbons (granulated or powder) and farmyard manure at various application rates (2 and 5 %). These techniques were applied on heavy metal(loid)s such as Ni, Cr, Cd, Pb, Mn, Cu, Zn, Fe, Co, and Al that were present in mine-impacted soil and caused bioaccumulation in cultivated plants. The results showed that, compared with the control, almost all the techniques significantly (P ≤ 0.01) reduced the bioavailability of heavy metal(loid)s in the amended soil. The bioaccumulation of heavy metal(loid)s in Penisitum americanum and Sorghum bicolor was significantly (P ≤ 0.01) reduced with all techniques, while Zn and Cd concentrations increased with the use of farmyard manure. Also compared with the control, plant growth was significantly decreased with the use of activated carbons, particularly with powder activated carbons, while farmyard manure (at 5 %) significantly (P ≤ 0.01) increased plant growth. Among the amendment techniques, powdered activated carbons (at 5 %) were best at reducing the bioavailability of heavy metal(loid)s in soil and plant accumulation. However, it negatively affected the growth of selected plant species.


Subject(s)
Charcoal/chemistry , Manure/analysis , Metals, Heavy/metabolism , Poaceae/metabolism , Soil Pollutants/metabolism , Sorghum/metabolism , Adsorption , Biodegradation, Environmental , Metals, Heavy/analysis , Mining , Plant Development , Poaceae/chemistry , Poaceae/growth & development , Soil/chemistry , Soil Pollutants/analysis , Sorghum/chemistry , Sorghum/growth & development
3.
Environ Monit Assess ; 187(9): 605, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26324064

ABSTRACT

This study aimed to investigate the lead (Pb) and cadmium (Cd) concentrations in the soil and plants (medicinal and fodder) grown in chromite mining-affected areas, Northern Pakistan. Soil and plant samples were collected and analyzed for Pb and Cd concentrations using atomic absorption spectrometer. Soil pollution load indices (PLIs) were greater than 2 for both Cd and Pb, indicating high level of contamination in the study area. Furthermore, Cd concentrations in the soil surrounding the mining sites exceeded the maximum allowable limit (MAL) (0.6 mg kg(-1)), while the concentrations of Pb were lower than the MAL (350 mg kg(-1)) set by State Environmental Protection Administration (SEPA) for agriculture soil. The concentrations of Cd and Pb were significantly higher (P < 0.001) in the soil of the mining-contaminated sites as compared to the reference site, which can be attributed to the dispersion of toxic heavy metals, present in the bed rocks and waste of the mines. The concentrations of Pb and Cd in majority of medicinal and fodder plant species grown in surrounding areas of mines were higher than their MALs set by World Health Organization/Food Agriculture Organization (WHO/FAO) for herbal (10 and 0.3 mg kg(-1), respectively) and edible (0.3 and 0.2 mg kg(-1), respectively) plants. The high concentrations of Cd and Pb may cause contamination of the food chain and health risk.


Subject(s)
Agriculture/methods , Cadmium/analysis , Environmental Monitoring/methods , Lead/analysis , Plants/chemistry , Soil Pollutants/analysis , Soil/chemistry , Agriculture/standards , Animal Feed/analysis , Environmental Monitoring/standards , Environmental Monitoring/statistics & numerical data , Mining , Pakistan , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL