Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Cell Dev Biol ; 10: 975919, 2022.
Article in English | MEDLINE | ID: mdl-36313576

ABSTRACT

Extracellular vesicles (EVs) are membranous nanoparticles secreted by almost all cell types. Reflecting the physiopathological state of the parental cell, EVs circulate in all body fluids, reaching distant cell targets and delivering different bioactive cargoes. As biological carriers, EVs influence their microenvironment altering cellular responses, being considered promising biomarkers for both physiological and pathological conditions. EVs are heterogeneous in terms of size and composition, depending on cell type and exposure to stimuli, and different methods have been developed to characterize their morphological, biophysical, and biochemical features. Among them, electron microscopy (EM) is the main technique used, however, the lack of standardized protocols makes it difficult to characterize EVs with a good reproducibility, thus using multiple approaches may represent a way to obtain more precise information. Furthermore, the relationship between architecture and function, not only in a molecular, but also in a cellular level, is gaining growing emphasis, characterizing morphometric parameters may represent a distinct, but effective approach to study the physiopathological state of the cell. Atomic force microscopy (AFM), may represent a promising method to study in detail EVs dynamics throughout the cell surface and its variations related to the physiological state, overcoming the limits of EM, and providing more reliable information. In this study, human neuroblastoma SH-SY5Y cell line, a cellular model to investigate neurodegeneration and oxidative stress, has been used to perform a comparative morphological and quantitative analysis of membrane budding and isolated large vesicles-enriched (microvesicles-like vesicles; MVs) fraction from control or oxidative stressed cells. Our main goal was to build up a methodology to characterize EVs morphology and spatial distribution over the cell surface in different physiological conditions, and to evaluate the efficacy of AFM against conventional EM. Interestingly, both microscopy techniques were effective for this analysis, but AFM allowed to reveal a differential profiling of plasma membrane budding between the physiological and the stress condition, indicating a potential relationship between mechanical characteristics and functional role. The results obtained may provide interesting perspectives for the use of AFM to study EVs, validating a morphometric approach to understand the pathophysiological state of the cell related to EVs trafficking.

2.
Talanta ; 221: 121442, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33076067

ABSTRACT

Ageing of red blood cells (RBC) is a physiological process, fundamental to ensure a proper blood homeostasis that, in vivo, balances the production of new cells and the removal of senescent erythrocytes. A detailed characterization at the cellular level of the progression of the ageing phenomenon can reveal biological, biophysical and biochemical fingerprints for diseases related to misbalances of the cell turnover and for blood pathologies. We applied Principal Components Analysis (PCA) to mean Raman spectra of single cells at different ageing times to rapidly highlight subtle spectral differences associated with conformational and biochemical modifications. Our results demonstrate a two-step ageing process characterized by a first phase in which proteins plays a relevant role, followed by a further cellular evolution driven by alterations in the membrane lipid contribution. Moreover, we used the same approach to directly analyse relevant spectral effects associated to reduction in Haemoglobin oxygenation level and membrane fluidity induced by the ageing. The method is robust and effective, allowing to classify easily the studied cells based on their age and morphology, and consequently to evaluate the biological quality of a blood sample.


Subject(s)
Erythrocytes , Spectrum Analysis, Raman , Multivariate Analysis , Principal Component Analysis
3.
Article in English | MEDLINE | ID: mdl-30602518

ABSTRACT

The development of antibiotic-resistant bacteria is a worldwide health-related emergency that calls for new tools to study the bacterial metabolism and to obtain fast diagnoses. Indeed, the conventional analysis time scale is too long and affects our ability to fight infections. Slowly growing bacteria represent a bigger challenge, since their analysis may require up to months. Among these bacteria, Mycobacterium tuberculosis, the causative agent of tuberculosis, has caused more than 10 million new cases and 1.7 million deaths in 2016 only. We employed a particularly powerful nanomechanical oscillator, the nanomotion sensor, to characterize rapidly and in real time tuberculous and nontuberculous bacterial species, Mycobacterium bovis bacillus Calmette-Guérin and Mycobacterium abscessus, respectively, exposed to different antibiotics. Here, we show how high-speed and high-sensitivity detectors, the nanomotion sensors, can provide a rapid and reliable analysis of different mycobacterial species, obtaining qualitative and quantitative information on their responses to different drugs. This is the first application of the technique to tackle the urgent medical issue of mycobacterial infections, evaluating the dynamic response of bacteria to different antimicrobial families and the role of the replication rate in the resulting nanomotion pattern. In addition to a fast analysis, which could massively benefit patients and the overall health care system, we investigated the real-time responses of the bacteria to extract unique information on the bacterial mechanisms triggered in response to antibacterial pressure, with consequences both at the clinical level and at the microbiological level.


Subject(s)
Antibiotics, Antitubercular/pharmacology , Mycobacterium abscessus/drug effects , Mycobacterium bovis/drug effects , Mycobacterium tuberculosis/drug effects , Humans , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/drug therapy , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology
4.
J Mol Recognit ; 31(11): e2732, 2018 11.
Article in English | MEDLINE | ID: mdl-29876977

ABSTRACT

Erythrocytes (RBCs) constitute a very interesting class of cells both for their physiological function and for a variety of peculiarities. Due to their exceptionally strong relationship with the environment, the morphology and nanoscale characteristics of these cells can reveal their biochemical status and structural integrity. Among the possible subjects of investigations, the RBCs' ageing is of the utmost importance. This is a fundamental phenomenon that, in physiological conditions, triggers the cell turnover and ensures the blood homeostasis. With these premises, in recent years, we have presented an atomic force microscopy-based methodology to characterize the patterns of RBC ageing from the morphological point of view. In the present work, we used an ageing protocol more similar to the physiological conditions and we used differential scanning calorimetry and atomic force microscopy to probe the cross correlation between important structural and functional proteins. We also assessed the role played by fundamental structural and membrane proteins in the development of the most relevant morphological intermediates observed along the ageing. Furthermore, we coupled the morphological ageing patterns to the (bio)chemical alterations detected by Raman spectroscopy. This allowed identifying the chronology of the ageing morphologies and the metabolic pathways most involved in their development. As a whole, the present study provides the base to correlate specific molecular alterations to the development of structural anomalies, and these latter to the functional status of blood cells.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/chemistry , Erythrocytes/physiology , Hemoglobins/chemistry , Calorimetry , Cellular Senescence , Erythrocytes/ultrastructure , Homeostasis , Humans , Microscopy, Atomic Force , Protein Stability , Spectrum Analysis, Raman , Surface Properties
5.
J Mol Recognit ; 31(10): e2725, 2018 10.
Article in English | MEDLINE | ID: mdl-29748973

ABSTRACT

Myotonic Dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults, characterized by a variety of multisystemic features and associated with cardiac anomalies. Among cardiac phenomena, conduction defects, ventricular arrhythmias, and dilated cardiomyopathy represent the main cause of sudden death in DM1 patients. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a powerful in vitro model for molecular, biochemical, and physiological studies of disease in the target cells. Here, we used an Atomic Force Microscope (AFM) to measure the beating profiles of a large number of cells, organized in CM clusters (Beating Bodies, BBs), obtained from wild type (WT) and DM1 patients. We monitored the evolution over time of the frequency and intensity of the beating. We determined the variations between different BBs and over various areas of a single BB, caused by morphological and biomechanical variations. We exploited the AFM tip to apply a controlled force over the BBs, to carefully assess the biomechanical reaction of the different cell clusters over time, both in terms of beating frequency and intensity. Our measurements demonstrated differences between the WT and DM1 clusters highlighting, for the DM1 samples, an instability which was not observed in WT cells. We measured differences in the cellular response to the applied mechanical stimulus in terms of beating synchronicity over time and cell tenacity, which are in good agreement with the cellular behavior in vivo. Overall, the combination of hiPSC-CMs with AFM characterization can become a new tool to study the collective movements of cell clusters in different conditions and can be extended to the characterization of the BB response to chemical and pharmacological stimuli.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Microscopy, Atomic Force/methods , Myocytes, Cardiac/cytology , Cell Differentiation/physiology , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myotonic Dystrophy/metabolism
6.
Sci Rep ; 8(1): 5277, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29588453

ABSTRACT

The determination of the function of cells in zero-gravity conditions is a subject of interest in many different research fields. Due to their metabolic unicity, the characterization of the behaviour of erythrocytes maintained in prolonged microgravity conditions is of particular importance. Here, we used a 3D-clinostat to assess the microgravity-induced modifications of the structure and function of these cells, by investigating how they translate these peculiar mechanical stimuli into modifications, with potential clinical interest, of the biochemical pathways and the aging processes. We compared the erythrocyte's structural parameters and selected metabolic indicators that are characteristic of the aging in microgravity and standard static incubation conditions. The results suggest that, at first, human erythrocytes react to external stimuli by adapting their metabolic patterns and the rate of consumption of the cell resources. On longer timeframes, the cells translate even small differences in the environment mechanical solicitations into structural and morphologic features, leading to distinctive morphological patterns of aging.


Subject(s)
Erythrocyte Aging , Erythrocytes/cytology , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , Cell Shape , Erythrocytes/metabolism , Erythrocytes/pathology , Hemoglobins/analysis , Hemoglobins/metabolism , Hemolysis , Humans , Metabolic Networks and Pathways , Oxidation-Reduction , Oxidative Stress , Weightlessness Simulation
7.
Biophys Chem ; 229: 110-114, 2017 10.
Article in English | MEDLINE | ID: mdl-28527974

ABSTRACT

Far-UV Circular Dichroism experiments and Atomic Force Microscopy tomography are employed to assess the impact of ß-sheet breakers on the Aß1-40 peptide aggregation process in the presence of Cu2+ or Zn2+ transition metals. In this work we focus on two specific 5-amino acids long ß-sheet breakers, namely the LPFFD Soto peptide, already known in the literature, and the LPFFN peptide recently designed and studied by our team. We provide evidence that both ß-sheet breakers are effective in reducing the Aß1-40 aggregation propensity, even in the presence of metal ions.


Subject(s)
Amyloid beta-Peptides/metabolism , Metals/metabolism , Peptide Fragments/metabolism , Amyloid beta-Peptides/chemistry , Circular Dichroism , Humans , Metals/chemistry , Microscopy, Atomic Force , Peptide Fragments/chemistry , Protein Structure, Secondary
8.
J Microbiol Methods ; 138: 72-81, 2017 07.
Article in English | MEDLINE | ID: mdl-26806415

ABSTRACT

Reducing the emergence and spread of antibiotic-resistant bacteria is one of the major healthcare issues of our century. In addition to the increased mortality, infections caused by multi-resistant bacteria drastically enhance the healthcare costs, mainly because of the longer duration of illness and treatment. While in the last 20years, bacterial identification has been revolutionized by the introduction of new molecular techniques, the current phenotypic techniques to determine the susceptibilities of common Gram-positive and Gram-negative bacteria require at least two days from collection of clinical samples. Therefore, there is an urgent need for the development of new technologies to determine rapidly drug susceptibility in bacteria and to achieve faster diagnoses. These techniques would also lead to a better understanding of the mechanisms that lead to the insurgence of the resistance, greatly helping the quest for new antibacterial systems and drugs. In this review, we describe some of the tools most currently used in clinical and microbiological research to study bacteria and to address the challenge of infections. We discuss the most interesting advancements in the molecular susceptibility testing systems, with a particular focus on the many applications of the MALDI-TOF MS system. In the field of the phenotypic characterization protocols, we detail some of the most promising semi-automated commercial systems and we focus on some emerging developments in the field of nanomechanical sensors, which constitute a step towards the development of rapid and affordable point-of-care testing devices and techniques. While there is still no innovative technique that is capable of completely substituting for the conventional protocols and clinical practices, many exciting new experimental setups and tools could constitute the basis of the standard testing package of future microbiological tests.


Subject(s)
Bacteria/classification , Bacterial Infections/diagnosis , Point-of-Care Testing , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacteria/drug effects , Bacteria/genetics , Bacterial Infections/microbiology , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests/methods
9.
J Mol Recognit ; 25(5): 285-91, 2012 May.
Article in English | MEDLINE | ID: mdl-22528190

ABSTRACT

The study of the mechanical properties of biosystems and the relationship with their biochemical and structural functionality is an increasingly interesting subject of investigation. In recent years, in particular, the use of the atomic force microscopy provides the tools for understanding the molecular basis of the mechanical behaviour of the biosystems. The ageing of erythrocytes [red blood cells (RBCs)] constitutes a particularly interesting subject of study because of its fundamental role in triggering the cell turnover by promoting the removal of malfunctioning RBCs when specific ageing markers appear on their surface. Moreover, it is also interesting to study the role that the variation in the cells mechanical properties plays in the progress of the phenomenon. In this study, the ageing of RBCs, accelerated by depleting the cells of their ATP, has been investigated by two methods. The first is a recently developed nondestructive approach that correlates the roughness of the plasma membrane to the mechanical characteristics and the structural integrity of the cell membrane-skeleton. The second consists in directly measuring the nanomechanical properties by acquiring and analysing force curves on the cell membrane. The application of the two methods allowed to define, for the first time, the general scheme of alterations the cells experience during the ageing. In particular, a progressive decrease of the membrane roughness, correlated to a weakening of the membrane-skeleton support, and a complex pattern of changes in the nanomechanical properties, which drives the morphological variation and the occurrence of the specific ageing markers on the cells, have been revealed.


Subject(s)
Cellular Senescence/physiology , Erythrocyte Membrane/ultrastructure , Erythrocytes/ultrastructure , Mechanical Phenomena , Microscopy, Atomic Force , Cells, Cultured , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Humans , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...