Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 467
Filter
1.
Front Immunol ; 15: 1427100, 2024.
Article in English | MEDLINE | ID: mdl-38983847

ABSTRACT

Introduction: Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods: We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results: We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion: Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.


Subject(s)
Inflammation , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/immunology , Inflammation/immunology , Humans , Interleukin-18/metabolism , Interleukin-18/immunology , Disease Models, Animal , COVID-19/immunology , Mice, Inbred C57BL , Macrophage Activation Syndrome/immunology , SARS-CoV-2/immunology
2.
bioRxiv ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38496448

ABSTRACT

Background: Lung cancer is the leading cause of cancer death in the world. While cigarette smoking is the major preventable factor for cancers in general and lung cancer in particular, old age is also a major risk factor. Aging-related chronic, low-level inflammation, termed inflammaging, has been widely documented; however, it remains unclear how inflammaging contributes to increased lung cancer incidence. Aim: To establish connections between aging-associated changes in the lungs and cancer risk. Methods: We analyzed public databases of gene expression for normal and cancerous human lungs and used mouse models to understand which changes were dependent on inflammation, as well as to assess the impact on oncogenesis. Results: Analyses of GTEx and TCGA databases comparing gene expression profiles from normal lungs, lung adenocarcinoma, lung squamous cell carcinoma of subjects across age groups revealed upregulated pathways such as inflammatory response, TNFA signaling via NFκB, and interferon-gamma response. Similar pathways were identified comparing the gene expression profiles of young and old mouse lungs. Transgenic expression of alpha 1 antitrypsin (AAT) partially reverses increases in markers of aging-associated inflammation and immune deregulation. Using an orthotopic model of lung cancer using cells derived from EML4-ALK fusion-induced adenomas, we demonstrated an increased tumor outgrowth in lungs of old mice while NLRP3 knockout in old mice decreased tumor volumes, suggesting that inflammation contributes to increased lung cancer development in aging organisms. Conclusions: These studies reveal how expression of an anti-inflammatory mediator (AAT) can reduce some but not all aging-associated changes in mRNA and protein expression in the lungs. We further show that aging is associated with increased tumor outgrowth in the lungs, which may relate to an increased inflammatory microenvironment.

4.
Immune Netw ; 24(1): e1, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38455460

ABSTRACT

IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rß chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP in vitro and in vivo. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for in vitro and in vivo experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.

5.
Virulence ; 15(1): 2333367, 2024 12.
Article in English | MEDLINE | ID: mdl-38515333

ABSTRACT

Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic ß-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.


Subject(s)
Candida albicans , beta-Glucans , Humans , Candida albicans/metabolism , Host-Pathogen Interactions , Macrophages/microbiology , Monocytes/microbiology , beta-Glucans/metabolism
6.
Neural Regen Res ; 19(10): 2189-2201, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38488552

ABSTRACT

Metabolism is a fundamental process by which biochemicals are broken down to produce energy (catabolism) or used to build macromolecules (anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.

7.
Pharmacol Ther ; 251: 108545, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866732

ABSTRACT

More than a decade ago IL-1 blockade was suggested as an add-on therapy for the treatment of cancer. This proposal was based on the overall safety record of anti-IL-1 biologics and the anti-tumor properties of IL-1 blockade in animal models of cancer. Today, a new frontier in IL-1 activity regulation has developed with several orally active NLRP3 inhibitors currently in clinical trials, including cancer. Despite an increasing body of evidence suggesting a role of NLRP3 and IL-1-mediated inflammation driving cancer initiation, immunosuppression, growth, and metastasis, NLRP3 activation in cancer remains controversial. In this review, we discuss the recent advances in the understanding of NLRP3 activation in cancer. Further, we discuss the current opportunities for NLRP3 inhibition in cancer intervention with novel small molecules.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasms , Animals , Inflammasomes , Inflammation/drug therapy , Interleukin-1 , Neoplasms/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Reactive Oxygen Species
8.
Proc Natl Acad Sci U S A ; 120(45): e2306476120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37906644

ABSTRACT

The IL-1 Family member IL-38 has been characterized primarily as an antiinflammatory cytokine in human and mouse models of systemic diseases. Here, we examined the role of IL-38 in the murine small intestine (SI). Immunostaining of SI revealed that IL-38 expression partially confines to intestinal stem cells. Cultures of intestinal organoids reveal IL-38 functions as a growth factor by increasing organoid size via inducing WNT3a. In contrast, organoids from IL-38-deficient mice develop more slowly. This reduction in size is likely due to the downregulation of intestinal stemness markers (i.e., Fzd5, Ephb2, and Olfm4) expression compared with wild-type organoids. The IL-38 binding to IL-1R6 and IL-1R9 is still a matter of debate. Therefore, to analyze the molecular mechanisms of IL-38 signaling, we also examined organoids from IL-1R9-deficient mice. Unexpectedly, these organoids, although significantly smaller than wild type, respond to IL-38, suggesting that IL-1R9 is not involved in IL-38 signaling in the stem cell crypt. Nevertheless, silencing of IL-1R6 disabled the organoid response to the growth property of IL-38, thus suggesting IL-1R6 as the main receptor used by IL-38 in the crypt compartment. In organoids from wild-type mice, IL-38 stimulation induced low concentrations of IL-1ß which contribute to organoid growth. However, high concentrations of IL-1ß have detrimental effects on the cultures that were prevented by treatment with recombinant IL-38. Overall, our data demonstrate an important regulatory function of IL-38 as a growth factor, and as an antiinflammatory molecule in the SI, maintaining homeostasis.


Subject(s)
Intestinal Mucosa , Wnt Signaling Pathway , Animals , Mice , Homeostasis , Intercellular Signaling Peptides and Proteins/metabolism , Interleukins/metabolism , Intestinal Mucosa/metabolism , Organoids/metabolism , Stem Cells/metabolism
9.
Cancer Res Commun ; 3(9): 1899-1911, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37772994

ABSTRACT

Defining feature of pancreatic ductal adenocarcinoma (PDAC) that participates in the high mortality rate and drug resistance is the immune-tolerant microenvironment which enables tumors to progress unabated by adaptive immunity. In this study, we report that PDAC cells release CSF-1 to induce nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) activation in myeloid cells. Increased NLRP3 expression was found in the pancreas of patients with PDAC when compared with normal pancreas which correlated with the formation of the NLRP3 inflammasome. Using human primary cells and an orthotopic PDAC mouse model, we show that NLRP3 activation is responsible for the maturation and release of the inflammatory cytokine IL1ß which selectively drives Th2-type inflammation via COX2/PGE2 induction. As a result of this inflammation, primary tumors were characterized by reduced cytotoxic CD8+ T-cell activation and increased tumor expansion. Genetic deletion and pharmacologic inhibition of NLRP3 enabled the development of Th1 immunity, increased intratumoral levels of IL2, CD8+ T cell­mediated tumor suppression, and ultimately limited tumor growth. In addition, we observed that NLRP3 inhibition in combination with gemcitabine significantly increased the efficacy of the chemotherapy. In conclusion, this study provides a mechanism by which tumor-mediated NLRP3 activation exploits a distinct adaptive immunity response that facilitates tumor escape and progression. Considering the ability to block NLRP3 activity with safe and small orally active molecules, this protein represents a new promising target to improve the limited therapeutic options in PDAC. SIGNIFICANT: This study provides novel molecular insights on how PDAC cells exploit NLRP3 activation to suppress CD8 T-cell activation. From a translational perspective, we demonstrate that the combination of gemcitabine with the orally active NLRP3 inhibitor OLT1177 increases the efficacy of monotherapy.

10.
Int J Biol Sci ; 19(12): 3908-3919, 2023.
Article in English | MEDLINE | ID: mdl-37564205

ABSTRACT

Calcific aortic valve disease (CAVD) is a chronic inflammatory disease with slow progression that involves soluble extracellular matrix (ECM) proteins. Previously, we found that recombinant interleukin (IL)-37 suppresses aortic valve interstitial cells (AVIC) inflammatory response through the interaction with IL-18 receptor α-chain (IL-18Rα) on the cell surface. Endogenous IL-37 can be retained in the cytoplasm or released into extracellular spaces. It remains unknown whether recombinant IL-37 exerts the anti-inflammatory effect through intracellular action. Here, we found that recombinant IL-37 suppressed AVIC inflammatory response to soluble ECM proteins. Interestingly, recombinant IL-37 was internalized by human AVICs in an IL-18Rα-independent fashion. Blocking endocytic pathways reduced the internalization and anti-inflammatory potency of recombinant IL-37. Overexpression of IL-37 in human AVICs suppressed soluble ECM proteins-induced NF-κB activation and the production of ICAM-1 and VCAM-1. However, IL-37D20A (mutant IL-37 lacking nucleus-targeting sequences) overexpression had no such effect, and the inflammatory response to soluble ECM proteins was essentially intact in AVICs from transgenic mice expressing IL-37D20A. Together, recombinant IL-37 can be internalized by human AVICs through endocytosis. Intracellular IL-37 exerts an anti-inflammatory effect through a nucleus-targeting mechanism. This study highlights the potent anti-inflammatory effect of recombinant IL-37 in both extracellular and intracellular compartments through distinct mechanisms.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Interleukin-1 , Animals , Humans , Mice , Anti-Inflammatory Agents , Aortic Valve Stenosis/metabolism , Cells, Cultured , Signal Transduction , Interleukin-1/pharmacology , Recombinant Proteins/pharmacology
11.
J Neuroinflammation ; 20(1): 147, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349821

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons, which leads to irreversible loss of peripheral motor functions. Death of dopaminergic neurons induces an inflammatory response in microglial cells, which further exacerbates neuronal loss. Reducing inflammation is expected to ameliorate neuronal loss and arrest motor dysfunctions. Because of the contribution of the NLRP3 inflammasome to the inflammatory response in PD, we targeted NLRP3 using the specific inhibitor OLT1177®. METHODS: We evaluated the effectiveness of OLT1177® in reducing the inflammatory response in an MPTP neurotoxic model of PD. Using a combination of in vitro and in vivo studies, we analyzed the effects of NLRP3 inhibition on pro-inflammatory markers in the brain, α-synuclein aggregation, and dopaminergic neuron survival. We also determined the effects of OLT1177® on locomotor deficits associated with MPTP and brain penetrance. RESULTS: Treatment with OLT1177® prevented the loss of motor function, reduced the levels of α-synuclein, modulated pro-inflammatory markers in the nigrostriatal areas of the brain, and protected dopaminergic neurons from degeneration in the MPTP model of PD. We also demonstrated that OLT1177® crosses the blood-brain barrier and reaches therapeutic concentrations in the brain. CONCLUSIONS: These data suggest that targeting the NLRP3 inflammasome by OLT1177® may be a safe and novel therapeutic approach to arrest neuroinflammation and protect against neurological deficits of Parkinson's disease in humans.


Subject(s)
Parkinson Disease , Humans , Animals , Mice , Parkinson Disease/drug therapy , alpha-Synuclein/pharmacology , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Dopaminergic Neurons , Mice, Inbred C57BL , Disease Models, Animal
12.
Front Immunol ; 14: 1160651, 2023.
Article in English | MEDLINE | ID: mdl-37251377

ABSTRACT

This Perspective highlights the work of Dr. Daniela Novick in the field of cytokine biology. Using affinity chromatography to characterize cytokine-binding proteins, she identified soluble forms of the receptors as well as binding proteins for several cytokines, including tumor necrosis factor, interleukin (IL) 6, IL-18 and IL-32. Importantly, her work has been key in the development of monoclonal antibodies against interferons and cytokines. This Perspective discusses her contribution to the field and highlights her recent review on this topic.


Subject(s)
Cytokines , Interleukin-6 , Female , Humans , Cytokines/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interferons , Antibodies, Monoclonal/therapeutic use
13.
Int J Mol Sci ; 24(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36768634

ABSTRACT

Trained immunity is the process of long-term functional reprogramming (a de facto innate immune memory) of innate immune cells such as monocytes and macrophages after an exposure to pathogens, vaccines, or their ligands. The induction of trained immunity is mediated through epigenetic and metabolic mechanisms. Apart from exogenous stimuli, trained immunity can be induced by endogenous compounds such as oxidized LDL, urate, fumarate, but also cytokines including IL-1α and IL-1ß. Here, we show that also recombinant IL-36γ, a pro-inflammatory cytokine of the IL-1-family, is able to induce trained immunity in primary human monocytes, demonstrated by higher cytokine responses and an increase in cellular metabolic pathways both regulated by epigenetic histone modifications. These effects could be inhibited by the IL-36 receptor antagonist as well as by IL-38, an anti-inflammatory cytokine of the IL-1 family which shares its main receptor with IL-36 (IL-1R6). Further, we demonstrated that trained immunity induced by IL-36γ is mediated by NF-κB and mTOR signaling. The inhibitory effect of IL-38 on IL-36γ-induced trained immunity was confirmed in experiments using bone marrow of IL-38KO and WT mice. These results indicate that exposure to IL-36γ results in long-term pro-inflammatory changes in monocytes which can be inhibited by IL-38. Recombinant IL-38 could therefore potentially be used as a therapeutic intervention for diseases characterized by exacerbated trained immunity.


Subject(s)
Immunity, Innate , Trained Immunity , Humans , Animals , Mice , Interleukins/pharmacology , Interleukins/metabolism , Macrophages/metabolism , Cytokines/metabolism
14.
Cells ; 12(2)2023 01 12.
Article in English | MEDLINE | ID: mdl-36672229

ABSTRACT

The NLRP3 inflammasome is a multimolecular complex that processes inactive IL-1ß and IL-18 into proinflammatory cytokines. OLT1177 is an orally active small compound that specifically inhibits NLRP3. Here, B16F10 melanoma were implanted in mice and treated with OLT1177 as well as combined with the glucocorticoid dexamethasone. At sacrifice, OLT1177 treated mice had significantly smaller tumors compared to tumor-bearing mice treated with vehicle. However, the combined treatment of OLT1177 plus dexamethasone revealed a greater suppression of tumor growth. This reduction was accompanied by a downregulation of nuclear and mitochondrial STAT3-dependent gene transcription and by a significant reduction of STAT3 Y705 and S727 phosphorylations in the tumors. In vitro, the human melanoma cell line 1205Lu, stimulated with IL-1α, exhibited significantly lower levels of STAT3 Y705 phosphorylation by the combination treatment, thus affecting the nuclear functions of STAT3. In the same cells, STAT3 serine 727 phosphorylation was also lower, affecting the mitochondrial functions of STAT3. In addition, metabolic analyses revealed a marked reduction of ATP production rate and glycolytic reserve in cells treated with the combination of OLT1177 plus dexamethasone. These findings demonstrate that the combination of OLT1177 and dexamethasone reduces tumor growth by targeting nuclear as well as mitochondrial functions of STAT3.


Subject(s)
Melanoma , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Melanoma/drug therapy , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , STAT3 Transcription Factor/metabolism
15.
Geroscience ; 45(1): 65-84, 2023 02.
Article in English | MEDLINE | ID: mdl-35622271

ABSTRACT

Aging is characterized by declines in physiological function that increase risk of age-associated diseases and limit healthspan, mediated in part by chronic low-grade inflammation. Interleukin (IL)-37 suppresses inflammation in pathophysiological states but has not been studied in the context of aging in otherwise healthy humans. Thus, we investigated associations between IL-37 and markers of healthspan in 271 young (18-39 years; n = 41), middle-aged (40-64 years; n = 162), and older (65 + years; n = 68) adults free of overt clinical disease. After conducting a thorough validation of AdipoGen's IL-37 ELISA, we found that plasma IL-37 is lower in older adults (young: 339 ± 240, middle-aged: 345 ± 234; older: 258 ± 175 pg/mL; P = 0.048), despite elevations in pro-inflammatory markers. As such, the ratios of circulating IL-37 to pro-inflammatory markers were considerably lower in older adults (e.g., IL-37 to C-reactive protein: young, 888 ± 918 vs. older, 337 ± 293; P = 0.02), indicating impaired IL-37 responsiveness to a pro-inflammatory state with aging and consistent with the notion of immunosenescence. These ratios were related to multiple indicators of healthspan, including positively to cardiorespiratory fitness (P < 0.01) and negatively to markers of adiposity, blood pressure, and blood glucose (all P < 0.05). Lastly, we correlated single-nucleotide polymorphisms (SNPs) in the IL37 and ILR8 (the co-receptor for IL-37) genes and found that variants in IL37 SNPs tended to be associated with blood pressure and adiposity (P = 0.08-0.09) but did not explain inter-individual variability in circulating IL-37 concentrations across age (P ≥ 0.23). Overall, our findings provide novel insights into a possible role of IL-37 in biological aging in humans.


Subject(s)
Aging , Polymorphism, Single Nucleotide , Humans , Aged , Middle Aged , Aging/genetics , Inflammation/genetics , C-Reactive Protein , Interleukins/genetics , Interleukin-1/genetics
16.
Immun Inflamm Dis ; 10(11): e712, 2022 11.
Article in English | MEDLINE | ID: mdl-36301025

ABSTRACT

INTRODUCTION: A major contributor to coronavirus disease 2019 (COVID-19) progression and severity is a dysregulated innate and adaptive immune response. Interleukin-38 (IL-38) is an IL-1 family member with broad anti-inflammatory properties, but thus far little is known about its role in viral infections. Recent studies have shown inconsistent results, as one study finding an increase in circulating IL-38 in COVID-19 patients in comparison to healthy controls, whereas two other studies report no differences in IL-38 concentrations. METHODS: Here, we present an exploratory, retrospective cohort study of circulating IL-38 concentrations in hospitalized COVID-19 patients admitted to two Dutch hospitals (discovery n = 148 and validation n = 184) and age- and sex-matched healthy subjects. Plasma IL-38 concentrations were measured by enzyme-linked immunosorbent assay, disease-related proteins by proximity extension assay, and clinical data were retrieved from hospital records. RESULTS: IL-38 concentrations were stable during hospitalization and similar to those of healthy control subjects. IL-38 was not associated with rates of intensive care unit admission or mortality. Only in men in the discovery cohort, IL-38 concentrations were positively correlated with hospitalization duration. A positive correlation between IL-38 and the inflammatory biomarker d-dimer was observed in men of the validation cohort. In women of the validation cohort, IL-38 concentrations correlated negatively with thrombocyte numbers. Furthermore, plasma IL-38 concentrations in the validation cohort correlated positively with TNF, TNFRSF9, IL-10Ra, neurotrophil 3, polymeric immunoglobulin receptor, CHL1, CD244, superoxide dismutase 2, and fatty acid binding protein 2, and negatively with SERPINA12 and cartilage oligomeric matrix protein. CONCLUSIONS: These data indicate that IL-38 is not associated with disease outcomes in hospitalized COVID-19 patients. However, moderate correlations between IL-38 concentrations and biomarkers of disease were identified in one of two cohorts. While we demonstrate that IL-38 concentrations are not indicative of COVID-19 severity, its anti-inflammatory effects may reduce COVID-19 severity and should be experimentally investigated.


Subject(s)
COVID-19 , Serpins , Male , Humans , Female , SARS-CoV-2 , Retrospective Studies , Biomarkers , Anti-Inflammatory Agents , Interleukins
17.
Proc Natl Acad Sci U S A ; 119(36): e2202577119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037361

ABSTRACT

Calcific aortic valve disease (CAVD) is common in people over the age of 65. Progressive valvular calcification is a characteristic of CAVD and due to chronic inflammation in aortic valve interstitial cells (AVICs) resulting in CAVD progression. IL-38 is a naturally occurring anti-inflammatory cytokine; here, we report lower levels of endogenous IL-38 in AVICs isolated from patients' CAVD valves compared to AVICs from non-CAVD valves. Recombinant IL-38 suppressed spontaneous inflammatory activity and calcium deposition in cultured AVICs. In mice, knockdown of IL-38 enhanced the production of inflammatory mediators in murine AVICs exposed to the proinflammatory stimulant matrilin-2. We also observed that in cultured AVICs matrilin-2 stimulation activated the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome with procaspase-1 cleavage into active caspase-1. The addition of IL-38 to matrilin-2-treated AVICs suppressed caspase-1 activation and reduced the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, runt-related transcription factor 2, and alkaline phosphatase. Aged IL-38-deficient mice fed a high-fat diet exhibited aortic valve lesions compared to aged wild-type mice fed the same diet. The interleukin-1 receptor 9 (IL-1R9) is the putative receptor mediating the anti-inflammatory properties of IL-38; we observed that IL-1R9-deficient mice exhibited spontaneous aortic valve thickening and greater calcium deposition in AVICs compared to wild-type mice. These data demonstrate that IL-38 suppresses spontaneous and stimulated osteogenic activity in aortic valve via inhibition of the NLRP3 inflammasome and caspase-1. The findings of this study suggest that IL-38 has therapeutic potential for prevention of CAVD progression.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Interleukins , Animals , Anti-Inflammatory Agents/pharmacology , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/drug therapy , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Calcinosis/drug therapy , Calcium/metabolism , Caspases/metabolism , Cells, Cultured , Humans , Inflammasomes/metabolism , Interleukin-1 , Interleukins/genetics , Interleukins/metabolism , Interleukins/pharmacology , Matrilin Proteins/pharmacology , Mice , Mice, Inbred NOD , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteogenesis , Receptors, Interleukin-9/genetics , Recombinant Proteins/pharmacology
18.
Elife ; 112022 08 30.
Article in English | MEDLINE | ID: mdl-36040311

ABSTRACT

The anti-inflammatory cytokine interleukin-37 (IL-37) belongs to the IL-1 family but is not expressed in mice. We used a human IL-37 (hIL-37tg) expressing mouse, which has been subjected to various models of local and systemic inflammation as well as immunological challenges. Previous studies reveal an immunomodulatory role of IL-37, which can be characterized as an important suppressor of innate immunity. Here, we examined the functions of IL-37 in the central nervous system and explored the effects of IL-37 on neuronal architecture and function, microglial phenotype, cytokine production and behavior after inflammatory challenge by intraperitoneal LPS-injection. In wild-type mice, decreased spine density, activated microglial phenotype and impaired long-term potentiation (LTP) were observed after LPS injection, whereas hIL-37tg mice showed no impairment. In addition, we crossed the hIL-37tg mouse with an animal model of Alzheimer's disease (APP/PS1) to investigate the anti-inflammatory properties of IL-37 under chronic neuroinflammatory conditions. Our results show that expression of IL-37 is able to limit inflammation in the brain after acute inflammatory events and prevent loss of cognitive abilities in a mouse model of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Interleukin-1/metabolism , Alzheimer Disease/metabolism , Animals , Cognitive Dysfunction/metabolism , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation/metabolism , Interleukins/metabolism , Lipopolysaccharides/metabolism , Mice , Mice, Transgenic , Microglia/metabolism , Neuroinflammatory Diseases
19.
Front Immunol ; 13: 964365, 2022.
Article in English | MEDLINE | ID: mdl-36016926

ABSTRACT

Interleukin (IL)-38 is the latest discovered member of the interleukin-1 family, which has anti-inflammatory properties similar to IL-36Ra. Several studies compared circulating IL-38 concentrations in healthy and diseased populations to characterize its role in both auto-immune and inflammatory pathologies, with both higher and lower concentrations being associated with certain diseases. However, in order to use IL-38 as a biomarker, a reference range in healthy adults is needed. To establish a reference IL-38 circulating concentration, accessible data from 25 eligible studies with IL-38 concentrations in healthy adults was collected. To validate the values found in literature, we measured IL-38 concentrations by enzyme-linked immunosorbent assay (ELISA) in several cohorts from our own institute. Additionally, the effect of blood collection techniques, freeze thawing cycles, and hemolysis on IL-38 measurements was assessed. To evaluate the importance of the genetic background of individuals as confounding factor of IL-38 synthesis, we used publicly available eQTL databases with matched data on allele frequencies in individuals of different ethnicities. Mean IL-38 concentrations in the various studies were weighted by their corresponding sample size, resulting in a weighted mean, and weighted upper and lower limits were calculated by mean ± 2 SD. Differences of over 10.000-fold were found in the weighted means between studies, which could not be attributed to the blood collection method or assessment of IL-38 in plasma or serum. Although IL-38 concentrations were markedly higher in Chinese then in European population studies, we could not show an association with the genetic background. From our analysis, a reference range for circulating IL-38 in healthy adults could thus not yet be established.


Subject(s)
Anti-Inflammatory Agents , Interleukin-1 , Adult , Biomarkers , Enzyme-Linked Immunosorbent Assay/methods , Humans , Interleukins/genetics , Reference Values
20.
Molecules ; 27(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889366

ABSTRACT

Toll-interleukin receptor (TIR) domains have emerged as critical players involved in innate immune signaling in humans but are also expressed as potential virulence factors within multiple pathogenic bacteria. However, there has been a shortage of structural studies aimed at elucidating atomic resolution details with respect to their interactions, potentially owing to their dynamic nature. Here, we used a combination of biophysical and biochemical studies to reveal the dynamic behavior and functional interactions of a panel of both bacterial TIR-containing proteins and mammalian receptor TIR domains. Regarding dynamics, all three bacterial TIR domains studied here exhibited an inherent exchange that led to severe resonance line-broadening, revealing their intrinsic dynamic nature on the intermediate NMR timescale. In contrast, the three mammalian TIR domains studied here exhibited a range in terms of their dynamic exchange that spans multiple timescales. Functionally, only the bacterial TIR domains were catalytic towards the cleavage of NAD+, despite the conservation of the catalytic nucleophile on human TIR domains. Our development of NMR-based catalytic assays allowed us to further identify differences in product formation for gram-positive versus gram-negative bacterial TIR domains. Differences in oligomeric interactions were also revealed, whereby bacterial TIR domains self-associated solely through their attached coil-coil domains, in contrast to the mammalian TIR domains that formed homodimers and heterodimers through reactive cysteines. Finally, we provide the first atomic-resolution studies of a bacterial coil-coil domain and provide the first atomic model of the TIR domain from a human anti-inflammatory IL-1R8 protein that undergoes a slow inherent exchange.


Subject(s)
Bacteria , Virulence Factors , Animals , Bacteria/metabolism , Bacterial Proteins/metabolism , Gram-Negative Bacteria/metabolism , Humans , Mammals/metabolism , Signal Transduction , Virulence Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...