Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826271

ABSTRACT

Codon usage bias, or the unequal use of synonymous codons, is observed across genes, genomes, and between species. The biased use of synonymous codons has been implicated in many cellular functions, such as translation dynamics and transcript stability, but can also be shaped by neutral forces. The Saccharomycotina, the fungal subphylum containing the yeasts Saccharomyces cerevisiae and Candida albicans , has been a model system for studying codon usage. We characterized codon usage across 1,154 strains from 1,051 species to gain insight into the biases, molecular mechanisms, evolution, and genomic features contributing to codon usage patterns across the subphylum. We found evidence of a general preference for A/T-ending codons and correlations between codon usage bias, GC content, and tRNA-ome size. Codon usage bias is also distinct between the 12 orders within the subphylum to such a degree that yeasts can be classified into orders with an accuracy greater than 90% using a machine learning algorithm trained on codon usage. We also characterized the degree to which codon usage bias is impacted by translational selection. Interestingly, the degree of translational selection was influenced by a combination of genome features and assembly metrics that included the number of coding sequences, BUSCO count, and genome length. Our analysis also revealed an extreme bias in codon usage in the Saccharomycodales associated with a lack of predicted arginine tRNAs. The order contains 24 species, and 23 are computationally predicted to lack tRNAs that decode CGN codons, leaving only the AGN codons to encode arginine. Analysis of Saccharomycodales gene expression, tRNA sequences, and codon evolution suggests that extreme avoidance of the CGN codons is associated with a decline in arginine tRNA function. Codon usage bias within the Saccharomycotina is generally consistent with previous investigations in fungi, which show a role for both genomic features and GC bias in shaping codon usage. However, we find cases of extreme codon usage preference and avoidance along yeast lineages, suggesting additional forces may be shaping the evolution of specific codons.

2.
Antimicrob Agents Chemother ; 66(9): e0070122, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35916517

ABSTRACT

Aspergillus fumigatus is the main etiological agent of aspergillosis. The antifungal drug caspofungin (CSP) can be used against A. fumigatus, and CSP tolerance is observed. We have previously shown that the transcription factor FhdA is important for mitochondrial activity. Here, we show that FhdA regulates genes transcribed by RNA polymerase II and III. FhdA influences the expression of tRNAs that are important for mitochondrial function upon CSP. Our results show a completely novel mechanism that is impacted by CSP.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Caspofungin/pharmacology , Codon Usage , Echinocandins/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Lipopeptides/pharmacology , Mitochondria/genetics , Mitochondria/metabolism , RNA Polymerase II/genetics , Transcription Factors/genetics
3.
Curr Protoc Microbiol ; 54(1): e89, 2019 09.
Article in English | MEDLINE | ID: mdl-31518062

ABSTRACT

Aspergillus fumigatus is an opportunistic human pathogenic mold. DNA extraction from this fungus is usually performed by mechanical perturbation of cells, as it possesses a rigid and complex cell wall. While this is not problematic for single isolates, it can be time consuming for large numbers of strains if using traditional DNA extraction procedures. Therefore, in this article we describe a fast and efficient thermal-shock method to release DNA from spores of A. fumigatus and other filamentous fungi without the need for complex extraction methods. This is especially important for high-throughput PCR analyses of mutants in 96- or 384-well formats in a very short period of time without any concern about sample cross-contamination. This method is currently being used to validate the protein-coding gene and non-coding RNA knockout libraries in A. fumigatus generated in our laboratory, and could be used in the future for diagnostics purposes. © 2019 The Authors.


Subject(s)
Aspergillus fumigatus/genetics , DNA, Fungal/genetics , Polymerase Chain Reaction/methods , Aspergillosis/microbiology , Containment of Biohazards , DNA, Fungal/isolation & purification , Humans , Spores, Fungal/genetics
4.
Curr Protoc Microbiol ; 54(1): e88, 2019 09.
Article in English | MEDLINE | ID: mdl-31518064

ABSTRACT

Aspergillus fumigatus is a human pathogen and the principal etiologic agent of invasive and chronic aspergillosis leading to several hundreds of thousands of deaths every year. Very few antifungals are available to treat infections caused by A. fumigatus, and resistance is developing to those we have. Our understanding of the molecular mechanisms that drive pathogenicity and drug resistance have been hampered by the lack of large mutant collections, which limits our ability to perform functional genomics analysis. Here we present a high-throughput gene knockout method that combines a highly reproducible fusion PCR method to enable generation of gene replacement cassettes with a multiwell format transformation procedure. This process can be used to generate 96 null mutants within 5 days by a single person at a cost of less than £18 ($24) per mutant and is being employed in our laboratory to generate a barcoded genome-wide knockout library in A. fumigatus. © 2019 The Authors.


Subject(s)
Aspergillus fumigatus/genetics , Gene Knockout Techniques/methods , Polymerase Chain Reaction/methods , DNA Primers/genetics , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...