Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 36(10): e22540, 2022 10.
Article in English | MEDLINE | ID: mdl-36083096

ABSTRACT

The tumor microenvironment (TME) is a complex network of non-malignant cells and stroma that perform a wide array of vital roles in tumor growth, immune evasion, metastasis, and therapeutic resistance. These highly diverse roles have been shown to be critically important to the progression of cancers and have already shown potential as therapeutic targets. Therefore, there has been a tremendous push to elucidate the pathways that underlie these roles and to develop new TME-directed therapies for cancer treatment. Unfortunately, TME-focused research has been limited by a lack of translational in vitro culture platforms that can model this highly complex niche and can support the integrated analysis of cell biology and function. In the current study, we investigate whether an independently developed reconfigurable microfluidic platform, known as Stacks, can address the critical need for translational multi-cellular tumor models and integrated analytics in TME research. We present data on multi-cellular culture of primary human cells in Stacks as well as the orthogonal analysis of cellular polarization, differentiation, migration, and cytotoxicity in this reconfigurable system. These expanded capabilities of Stacks are highly relevant to the cancer research community with the potential to enhance clinical translation of pre-clinical TME studies and to yield novel biological insight into TME crosstalk, metastasis, and responses to novel drug combinations or immune therapies.


Subject(s)
Neoplasms , Tumor Microenvironment , Cell Culture Techniques , Humans , Microfluidics , Neoplasms/pathology
2.
Cancers (Basel) ; 14(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35159026

ABSTRACT

Bone metastases represent a lethal condition that frequently occurs in solid tumors such as prostate, breast, lung, and renal cell carcinomas, and increase the risk of skeletal-related events (SREs) including pain, pathologic fractures, and spinal cord compression. This unique metastatic niche consists of a multicellular complex that cancer cells co-opt to engender bone remodeling, immune suppression, and stromal-mediated therapeutic resistance. This review comprehensively discusses clinical challenges of bone metastases, novel preclinical models of the bone and bone marrow microenviroment, and crucial signaling pathways active in bone homeostasis and metastatic niche. These studies establish the context to summarize the current state of investigational agents targeting BM, and approaches to improve BM-targeting therapies. Finally, we discuss opportunities to advance research in bone and bone marrow microenvironments by increasing complexity of humanized preclinical models and fostering interdisciplinary collaborations to translational research in this challenging metastatic niche.

3.
J Exp Bot ; 71(17): 5179-5190, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32333777

ABSTRACT

As sessile organisms, plants face versatile environmental challenges and require proper responses at multiple levels for survival. Epigenetic modification of DNA and histones is a conserved gene-regulatory mechanism and plays critical roles in diverse aspects of biological processes, ranging from genome defense and imprinting to development and physiology. In recent years, emerging studies have revealed the interplay between signaling transduction pathways, epigenetic modifications, and chromatin cascades. Specifically, histone acetylation and deacetylation dictate plant responses to environmental cues by modulating chromatin dynamics to regulate downstream gene expression as signaling outputs. In this review, we summarize current understandings of the link between plant signaling pathways and epigenetic modifications with a focus on histone acetylation and deacetylation.


Subject(s)
Histone Deacetylases , Histones , Acetylation , Epigenesis, Genetic , Histone Deacetylases/genetics , Histones/metabolism , Plants/genetics , Plants/metabolism
4.
Sci China Life Sci ; 63(2): 206-216, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31879846

ABSTRACT

Lysine acetylation, one of the major types of post-translational modifications, plays critical roles in regulating gene expression and protein function. Histone deacetylases (HDACs) are responsible for removing acetyl groups from lysines of both histone and non-histone proteins. While tremendous progress has been made in understanding the function and mechanism of HDACs in animals in the past two decades, nearly half of the HDAC studies in plants were reported within the past five years. In this review, we summarize the major findings on plant HDACs, with a focus on the model plant Arabidopsis thaliana, and highlight the components, regulatory mechanisms, and biological functions of HDAC complexes.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Acetylation , Amino Acid Sequence , Arabidopsis/metabolism , Gene Expression Regulation , Histones/metabolism , Lysine/metabolism , Plant Development/genetics , Plant Physiological Phenomena , Protein Processing, Post-Translational/genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...