Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
1.
Front Immunol ; 15: 1369073, 2024.
Article in English | MEDLINE | ID: mdl-38855103

ABSTRACT

FAT1, a substantial transmembrane protein, plays a pivotal role in cellular adhesion and cell signaling. Numerous studies have documented frequent alterations in FAT1 across various cancer types, with its aberrant expression being linked to unfavorable survival rates and tumor progression. In the present investigation, we employed bioinformatic analyses, as well as in vitro and in vivo experiments to elucidate the functional significance of FAT1 in pan-cancer, with a primary focus on lung cancer. Our findings unveiled FAT1 overexpression in diverse cancer types, including lung cancer, concomitant with its association with an unfavorable prognosis. Furthermore, FAT1 is intricately involved in immune-related pathways and demonstrates a strong correlation with the expression of immune checkpoint genes. The suppression of FAT1 in lung cancer cells results in reduced cell proliferation, migration, and invasion. These collective findings suggest that FAT1 has potential utility both as a biomarker and as a therapeutic target for lung cancer.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/genetics , Animals , Immunotherapy/methods , Mice , Cadherins/metabolism , Cadherins/genetics , Cell Line, Tumor , Prognosis , Gene Expression Regulation, Neoplastic , Cell Proliferation , Cell Movement , Computational Biology/methods
2.
J Dig Dis ; 25(4): 255-265, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38837552

ABSTRACT

OBJECTIVES: In this study we aimed to assess the impact of acetylation of hepatocyte nuclear factor 4α (HNF4α) on lysine 458 on the differentiation therapy of hepatocellular carcinoma (HCC). METHODS: Periodic acid-Schiff (PAS) staining, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and senescence-associated ß-galactosidase (SA-ß-gal) activity analysis were performed to assess the differentiation of HCC cells. HNF4α protein was detected by western blot and immunohistochemistry (IHC). The effects of HNF4α-K458 acetylation on HCC malignancy were evaluated in HCC cell lines, a Huh-7 xenograft mouse model, and an orthotopic model. The differential expression genes in Huh-7 xenograft tumors were screened by RNA-sequencing analysis. RESULTS: K458R significantly enhanced the inhibitory effect of HNF4α on the malignancy of HCC cells, whereas K458Q reduced the inhibitory effects of HNF4α. Moreover, K458R promoted, while K458Q decreased, HNF4α-induced HCC cell differentiation. K458R stabilized HNF4α, while K458Q accelerated the degradation of HNF4α via the ubiquitin proteasome system. K458R also enhanced the ability of HNF4α to inhibit cell growth of HCC in the Huh-7 xenograft mouse model and the orthotopic model. RNA-sequencing analysis revealed that inhibiting K458 acetylation enhanced the transcriptional activity of HNF4α without altering the transcriptome induced by HNF4α in HCC. CONCLUSION: Our data revealed that inhibiting K458 acetylation of HNF4α might provide a more promising candidate for differential therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Differentiation , Hepatocyte Nuclear Factor 4 , Liver Neoplasms , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Acetylation , Animals , Humans , Mice , Cell Line, Tumor , Lysine/metabolism , Xenograft Model Antitumor Assays
3.
Cell Death Dis ; 15(6): 416, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879600

ABSTRACT

Tripartite motif 8 (TRIM8) is an E3 ligase that plays dual roles in various tumor types. The biological effects and underlying mechanism of TRIM8 in hepatocellular carcinoma (HCC) remain unknown. Hepatocyte nuclear factor 1α (HNF1α) is a key transcriptional factor that plays a significant role in regulating hepatocyte differentiation and liver function. The reduced expression of HNF1α is a critical event in the development of HCC, but the underlying mechanism for its degradation remains elusive. In this study, we discovered that the expression of TRIM8 was upregulated in HCC tissues, and was positively correlated with aggressive tumor behavior of HCC and shorter survival of HCC patients. Overexpression of TRIM8 promoted the proliferation, colony formation, invasion, and migration of HCC cells, while TRIM8 knockdown or knockout exerted the opposite effects. RNA sequencing revealed that TRIM8 knockout suppresses several cancer-related pathways, including Wnt/ß-catenin and TGF-ß signaling in HepG2 cells. TRIM8 directly interacts with HNF1α, promoting its degradation by catalyzing polyubiquitination on lysine 197 in HCC cells. Moreover, the cancer-promoting effects of TRIM8 in HCC were abolished by the HNF1α-K197R mutant in vitro and in vivo. These data demonstrated that TRIM8 plays an oncogenic role in HCC progression through mediating the ubiquitination of HNF1α and promoting its protein degradation, and suggests targeting TRIM8-HNF1α may provide a promising therapeutic strategy of HCC.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Hepatocyte Nuclear Factor 1-alpha , Liver Neoplasms , Ubiquitination , Humans , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Animals , Male , Mice , Mice, Nude , Hep G2 Cells , Cell Proliferation , Female , Cell Movement , Middle Aged , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C
4.
Microbiol Spectr ; : e0420223, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874428

ABSTRACT

The underlying mechanism of thermotolerance, which is a key virulence factor essential for pathogenic fungi such as Cryptococcus neoformans, is largely unexplored. In this study, our findings suggest that Set302, a homolog of Set3 and a subunit of histone deacetylase complex Set3C, contributes to thermotolerance in C. neoformans. Specifically, the deletion of the predicted Set3C core subunit, Set302, resulted in further reduction in the growth of C. neoformans at 39°C, and survival of transient incubation at 50°C. Transcriptomics analysis revealed that the expression levels of numerous heat stress-responsive genes altered at both 30°C and 39°C due to the lack of Set302. Notably, at 39°C, the absence of Set302 led to the downregulation of gene expression related to the ubiquitin-proteasome system (UPS). Based on the GFP-α-synuclein overexpression model to characterize misfolded proteins, we observed a pronounced accumulation of misfolded GFP-α-synuclein at 39°C, consequently inhibiting C. neoformans thermotolerance. Furthermore, the loss of Set302 exacerbated the accumulation of misfolded GFP-α-synuclein during heat stress. Interestingly, the set302∆ strain exhibited a similar phenotype under proteasome stress as it did at 39°C. Moreover, the absence of Set302 led to reduced production of capsule and melanin. set302∆ strain also displayed significantly reduced pathogenicity and colonization ability compared to the wild-type strain in the murine infection model. Collectively, our findings suggest that Set302 modulates thermotolerance by affecting the degradation of misfolded proteins and multiple virulence factors to mediate the pathogenicity of C. neoformans.IMPORTANCECryptococcus neoformans is a pathogenic fungus that poses a potential and significant threat to public health. Thermotolerance plays a crucial role in the wide distribution in natural environments and host colonization of this fungus. Herein, Set302, a critical core subunit for the integrity of histone deacetylase complex Set3C and widely distributed in various fungi and mammals, governs thermotolerance and affects survival at extreme temperatures as well as the formation of capsule and melanin in C. neoformans. Additionally, Set302 participates in regulating the expression of multiple genes associated with the ubiquitin-proteasome system (UPS). By eliminating misfolded proteins under heat stress, Set302 significantly contributes to the thermotolerance of C. neoformans. Moreover, Set302 regulates the pathogenicity and colonization ability of C. neoformans in a murine model. Overall, this study provides new insight into the mechanism of thermotolerance in C. neoformans.

5.
Cancer Res ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861363

ABSTRACT

Colorectal cancer (CRC) is the second most common malignant tumor world-wide. Analysis of the changes that occur during CRC progression could provide insights into the molecular mechanisms driving CRC development and identify improved treatment strategies. Here, we performed an integrated multi-omics analysis of 435 trace-tumor-samples from 148 colorectal cancer (CRC) patients, covering non-tumor (NT), intraepithelial neoplasia (IEN), infiltration (IFT), and advanced-stage CRC (A-CRC) phases. Proteogenomics analyses demonstrated that KRAS and BRAF mutations were mutually exclusive and elevated oxidation phosphorylation in the IEN phase. Chr17q loss and chr20q gain were also mutually exclusive, occurred predominantly in the IEN and IFT phases, respectively, and impacted the cell cycle. Mutation of TP53 was frequent in the A-CRC phase and associated with tumor microenvironment, including increased extracellular matrix rigidity and stromal infiltration. Analysis of the profiles of CRC based on CMS and CRIS classifications revealed the progression paths of each subtype and indicated that microsatellite instability was associated with specific subtype classifications. Additional comparison of molecular characteristics of CRC based on location showed that ANKRD22 amplification by chr10q23.31 gain enhanced glycolysis in the right-sided CRC. The AOM/DSS-induced CRC carcinogenesis mouse model in mice indicated that DDX5 deletion due to chr17q loss promoted CRC development, consistent with the findings from the patient samples. Collectively, this study provides an informative resource for understanding the driving events of different stages of CRC and identifying the potential therapeutic targets.

6.
J Chin Med Assoc ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860774

ABSTRACT

BACKGROUND: Drug addiction is a social and medical problem that must be urgently addressed. The nucleus accumbens (NAc) is closely related to addiction-related learning memory, and γ-aminobutyric acid type B receptor (GABABR) is a potential target for the treatment of drug addiction. However, the role of GABABR activity levels in the NAc in cocaine addiction is unclear. METHODS: In this study, we established an animal model of cocaine dependence, modulated the level of GABABR activity, applied a conditioned place preference assay (CPP) to assess the role of the NAc in reconsolidation of addiction memory, evaluated learning and memory functions by behavioral experiments, examined the expression of GB1, GB2, CREB, p-CREB, PKA, ERK, and BDNF in the NAc by molecular biology experiments, and screened differentially significantly expressed genes by transcriptome sequencing. RESULTS: Our study showed that the GABAB receptor agonist BLF had a significant effect on locomotor distance in rats, promoted an increase in GABA levels and significantly inhibited the PKA and ERK1/2/CREB/BDNF signaling pathways. Moreover, transcriptome sequencing showed that GABABR antagonist intervention identified a total of 21 upregulated mRNAs and 21 downregulated mRNAs. The DE mRNA genes were mainly enriched in tyrosine metabolism; however, further study is needed. CONCLUSION: GABABR activity in the NAc is involved in the regulation of cocaine addiction and may play an important role through key mRNA pathways.

7.
Cancer Res ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775804

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide, primarily due to its rapid progression. The current treatment options for PDAC are limited, and a better understanding of the underlying mechanisms responsible for PDAC progression is required to identify improved therapeutic strategies. Here, we identified FBXO32 as an oncogenic driver in PDAC. FBXO32 was aberrantly upregulated in PDAC, and high FBXO32 expression was significantly associated with an unfavorable prognosis in PDAC patients. FRG1 deficiency promoted FBXO32 upregulation in PDAC. FBXO32 promoted cell migration and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, FBXO32 directly interacted with eEF1A1 and promoted its polyubiquitination at the K273 site, leading to enhanced activity of eEF1A1 and increased protein synthesis in PDAC cells. Moreover, FBXO32-catalyzed eEF1A1 ubiquitination boosted the translation of ITGB5 mRNA and activated FAK signaling, thereby facilitating focal adhesion assembly and driving PDAC progression. Importantly, interfering with the FBXO32-eEF1A1 axis or pharmaceutical inhibition of FAK by defactinib, an FDA-approved FAK inhibitor, substantially inhibited PDAC growth and metastasis driven by aberrantly activated FBXO32-eEF1A1 signaling. Overall, this study uncovers a mechanism by which PDAC cells rely on FBXO32-mediated eEF1A1 activation to drive progression and metastasis. FBXO32 may serve as a promising biomarker for selecting eligible PDAC patients for treatment with defactinib.

8.
Orthop Surg ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778356

ABSTRACT

OBJECTIVE: Modic change (MC) is defined as abnormalities observed in the intervertebral disc subchondral and adjacent vertebral endplate subchondral bone changes. Most studies on MC were reported in the lumbar spine and associated with lower back pain. However, MC has been rarely reported in the cervical spine, let alone in those who underwent cervical disc replacement (CDR). This study aimed to focus on MC in the cervical spine and reveal clinical and radiological parameters, especially heterotopic ossification (HO), for patients who underwent CDR. Furthermore, we illustrated the association between MC and HO. METHODS: We retrospectively reviewed patients who underwent CDA from January 2008 to December 2019. The Japanese Orthopaedic Association (JOA), Neck Disability Index (NDI), and Visual Analog Scale (VAS) scores were used to evaluate the clinical outcomes. Radiological evaluations were used to conclude the cervical alignment (CL) and range of motion (ROM) of C2-7, functional spinal unit angle (FSUA), shell angle (SA), FSU height, and HO. Univariate and multivariate logistic regressions were performed to identify the risk factors for HO. The Kaplan-Meier (K-M) method was used to analyze potential risk factors, and multivariate Cox regression was used to identify independent risk factors. RESULTS: A total of 139 patients were evaluated, with a mean follow-up time of 46.53 ± 26.60 months. Forty-nine patients were assigned to the MC group and 90 to the non-MC group. The incidence of MC was 35.3%, with type 2 being the most common. Clinical outcomes (JOA, NDI, VAS) showed no significant difference between the two groups. The differences in C2-7 ROM between the two groups were not significant, while the differences in SA ROM and FSUA ROM were significantly higher in the non-MC than in the MC group (p < 0.05). Besides, FSU height in MC group was significantly lower than that in non-MC group. Parameters concerning CL, including C2-7, FSUA, SA, were not significantly different between the two groups. The incidence of HO and high-grade HO, respectively, in the MC group was 83.7% and 30.6%, while that in the non-MC group was 53.3% and 2.2%, and such differences were significant (p < 0.05). Multivariate logistic regression analyses and Cox regression showed that MC and involved level were significantly associated with HO occurrence (p < 0.05). No implant migration and secondary surgery were observed. CONCLUSION: MC mainly affected the incidence of HO. Preoperative MC was significantly associated with HO formation after CDR and should be identified as a potential risk factor for HO. Rigorous criteria for MC should be taken into consideration when selecting appropriate candidates for CDR.

9.
Discov Oncol ; 15(1): 196, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809277

ABSTRACT

The identification of effective therapeutic targets plays a pivotal role in advancing cancer treatment outcomes. We employed a comprehensive pan-cancer analysis, complemented by experimental validation, to explore the potential of Nicotinamide N-methyltransferase (NNMT) as a promising therapeutic strategy for human cancers. By analyzing large-scale transcriptomic datasets across various cancer types, we consistently observed upregulated expression of NNMT. Furthermore, elevated NNMT expression correlated with inferior overall survival in multiple cancer cohorts, underscoring its significance as a prognostic biomarker. Additionally, we investigated the relationship between NNMT expression and the tumor immune microenvironment, which plays a crucial role in regulating anti-tumor immune responses. To confirm the malignant functions of NNMT in tumor cells, we conducted a series of cell-based experiments, revealing that NNMT promotes cancer cell proliferation and invasion, indicative of its oncogenic properties. The integration of computational analysis and experimental validation in our study firmly establishes NNMT as a potential therapeutic target for human cancers. Specifically, targeting NNMT holds promise for the development of innovative and effective cancer treatments. Further investigations into NNMT's role in cancer pathogenesis could potentially pave the way for groundbreaking advancements in cancer treatment.

10.
Clin Transl Med ; 14(6): e1727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804617

ABSTRACT

BACKGROUND: The liver is anatomically divided into eight segments based on the distribution of Glisson's triad. However, the molecular mechanisms underlying each segment and its association with hepatocellular carcinoma (HCC) heterogeneity are not well understood. In this study, our objective is to conduct a comprehensive multiomics profiling of the segmentation atlas in order to investigate potential subtypes and therapeutic approaches for HCC. METHODS: A high throughput liquid chromatography-tandem mass spectrometer strategy was employed to comprehensively analyse proteome, lipidome and metabolome data, with a focus on segment-resolved multiomics profiling. To classify HCC subtypes, the obtained data with normal reference profiling were integrated. Additionally, potential therapeutic targets for HCC were identified using immunohistochemistry assays. The effectiveness of these targets were further validated through patient-derived organoid (PDO) assays. RESULTS: A multiomics profiling of 8536 high-confidence proteins, 1029 polar metabolites and 3381 nonredundant lipids was performed to analyse the segmentation atlas of HCC. The analysis of the data revealed that in normal adjacent tissues, the left lobe was primarily involved in energy metabolism, while the right lobe was associated with small molecule metabolism. Based on the normal reference atlas, HCC patients with segment-resolved classification were divided into three subtypes. The C1 subtype showed enrichment in ribosome biogenesis, the C2 subtype exhibited an intermediate phenotype, while the C3 subtype was closely associated with neutrophil degranulation. Furthermore, using the PDO assay, exportin 1 (XPO1) and 5-lipoxygenase (ALOX5) were identified as potential targets for the C1 and C3 subtypes, respectively. CONCLUSION: Our extensive analysis of the segmentation atlas in multiomics profiling defines molecular subtypes of HCC and uncovers potential therapeutic strategies that have the potential to enhance the prognosis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Humans , Male , Multiomics
11.
Front Plant Sci ; 15: 1380081, 2024.
Article in English | MEDLINE | ID: mdl-38807779

ABSTRACT

Herbaceous marshes are widely distributed in China and are vital to regional ecological security and sustainable development. Vegetation net primary productivity (NPP) is a vital indicator of vegetation growth. Climatic change can significantly affect NPP, but variations in NPP of herbaceous marsh and their responses to climate change in China remain unclear. Using meteorological data and MODIS NPP data during 2000-2020, this study analyzed the spatial and temporal variations of NPP and their responses to climate change in Chinese herbaceous marshes. We found that the annual NPP of herbaceous marshes in China increased significantly at a rate of 3.34 g C/m2/a from 2000 to 2020, with an average value of 336.60 g C/m2. The increased annual total precipitation enhanced the national average NPP, whereas annual mean temperature had no significant effect on the national average NPP. Regionally, precipitation had a significant positive effect on the NPP in temperate semi-arid and arid and temperate semi-humid and humid marsh regions. For the first time, we discovered asymmetry effects of daytime and nighttime temperatures on NPP in herbaceous marshes of China. In temperate humid and semi-humid marsh regions, increased summer daytime temperature decreased the NPP while increased summer nighttime temperature increased the NPP. In the Tibetan Plateau, increased autumn daytime temperature, as well as summer daytime and nighttime temperatures could increase the NPP of herbaceous marshes. This study highlights the different influences of seasonal climate change on the NPP of herbaceous marshes in China and indicates that the differential effects of daytime and nighttime temperatures should be considering in simulating the NPP of herbaceous marshes in terrestrial ecosystem models, especially under the background of global asymmetric diurnal warming.

12.
J Proteome Res ; 23(6): 2206-2218, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38723043

ABSTRACT

Acupuncture is widely used to treat dry eye disease (DED), but its effect has not been reported in treating video display terminal (VDT)-related dry eye, and the mechanism of acupuncture on VDT-related dry eye is also unknown. In our study, the tear proteome was compared with identifying possible mechanisms and biomarkers for predicting acupuncture effectiveness in VDT-related dry eye. The results showed that the ocular surface disease index scores were significantly different between the acupuncture group (AC group) and artificial tears group (AT group) at the end of the study, whereas tear film breakup time (TFBUT) and Schirmer I test (SIT) were not significantly different between the groups. Proteome changes pre- and post-treatment in the AC group were associated with B cell-related immune processes, inflammation, glycolysis, and actin cytoskeleton. Furthermore, the proteins hexosaminidase A and mannose-binding lectin 1 could prospectively predict whether acupuncture treatment was effective. Therefore, we believe that acupuncture can provide greater improvement in the clinical symptoms of VDT-related dry eye than artificial tears. The mechanism of acupuncture in VDT-related dry eye treatment may be associated with glycolysis- and actin cytoskeleton remodeling-mediated inflammatory and immune processes. Additionally, hexosaminidase A and mannose-binding lectin 1 are biomarkers for predicting the efficacy of acupuncture for VDT-related dry eye.


Subject(s)
Acupuncture Therapy , Dry Eye Syndromes , Proteomics , Tears , Humans , Dry Eye Syndromes/therapy , Dry Eye Syndromes/metabolism , Tears/metabolism , Acupuncture Therapy/methods , Male , Female , Proteomics/methods , Middle Aged , Computer Terminals , Adult , Biomarkers/metabolism , Biomarkers/analysis , Proteome/analysis , Proteome/metabolism , Eye Proteins/metabolism
13.
Haematologica ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813732

ABSTRACT

Impaired differentiation of megakaryocytes constitutes the principal etiology of thrombocytopenia. The signal transducer and activator of transcription 3 (STAT3) is a crucial transcription factor in regulating megakaryocyte differentiation, yet the precise mechanism of its activation remains unclear. PALLD, an actin-associated protein, has been increasingly recognized for its essential functions in multiple biological processes. This study revealed that megakaryocyte/plateletspecific knockout of PALLD in mice exhibited thrombocytopenia due to diminished platelet biogenesis. In megakaryocytes, PALLD deficiency led to impaired proplatelet formation and polyploidization, ultimately weakening their differentiation for platelet production. Mechanistic studies demonstrated that PALLD bound to STAT3 and interacted with its DNA-binding domain (DBD) and Src homology 2 (SH2) domain via Immunoglobulin domain 3 (Ig3). Moreover, the absence of PALLD attenuated STAT3 Y705 phosphorylation and impeded STAT3 nuclear translocation. Based on the PALLD-STAT3 binding sequence, we designed a peptide C-P3, which can facilitate megakaryocyte differentiation and accelerate platelet production in vivo. In conclusion, this study highlights the pivotal role of PALLD in megakaryocyte differentiation and proposes a novel approach for treating thrombocytopenia by targeting the PALLD-STAT3 interaction.

14.
Free Radic Biol Med ; 221: 136-154, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38763208

ABSTRACT

Ferroptosis, a novel form of iron-dependent non-apoptotic cell death, plays an active role in the pathogenesis of diverse diseases, including cancer. However, the mechanism through which ferroptosis is regulated in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, our study, via combining bioinformatic analysis with experimental validation, showed that ferroptosis is inhibited in PDAC. Genome-wide sequencing further revealed that the ferroptosis activator imidazole ketone erastin (IKE) induced upregulation of the E3 ubiquitin ligase RBCK1 in PDAC cells at the transcriptional or translational level. RBCK1 depletion or knockdown rendered PDAC cells more vulnerable to IKE-induced ferroptotic death in vitro. In a mouse xenograft model, genetic depletion of RBCK1 increased the killing effects of ferroptosis inducer on PDAC cells. Mechanistically, RBCK1 interacts with and polyubiquitylates mitofusin 2 (MFN2), a key regulator of mitochondrial dynamics, to facilitate its proteasomal degradation under ferroptotic stress, leading to decreased mitochondrial reactive oxygen species (ROS) production and lipid peroxidation. These findings not only provide new insights into the defense mechanisms of PDAC cells against ferroptotic death but also indicate that targeting the RBCK1-MFN2 axis may be a promising option for treating patients with PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Ferroptosis , GTP Phosphohydrolases , Pancreatic Neoplasms , Reactive Oxygen Species , Ubiquitin-Protein Ligases , Ferroptosis/genetics , Humans , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Proteolysis , Ubiquitination , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Piperazines , Transcription Factors
15.
Nat Commun ; 15(1): 3860, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719824

ABSTRACT

Dual blocker therapy (DBT) has the enhanced antitumor benefits than the monotherapy. Yet, few effective biomarkers are developed to monitor the therapy response. Herein, we investigate the DBT longitudinal plasma proteome profiling including 113 longitudinal samples from 22 patients who received anti-PD1 and anti-CTLA4 DBT therapy. The results show the immune response and cholesterol metabolism are upregulated after the first DBT cycle. Notably, the cholesterol metabolism is activated in the disease non-progressive group (DNP) during the therapy. Correspondingly, the clinical indicator prealbumin (PA), free triiodothyronine (FT3) and triiodothyronine (T3) show significantly positive association with the cholesterol metabolism. Furthermore, by integrating proteome and radiology approach, we observe the high-density lipoprotein partial remodeling are activated in DNP group and identify a candidate biomarker APOC3 that can reflect DBT response. Above, we establish a machine learning model to predict the DBT response and the model performance is validated by an independent cohort with balanced accuracy is 0.96. Thus, the plasma proteome profiling strategy evaluates the alteration of cholesterol metabolism and identifies a panel of biomarkers in DBT.


Subject(s)
Cholesterol , Proteome , Humans , Cholesterol/blood , Cholesterol/metabolism , Proteome/metabolism , Female , Male , Middle Aged , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/blood , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/blood , Biomarkers/blood , Aged , Triiodothyronine/blood , Machine Learning , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/blood , Neoplasms/metabolism , Proteomics/methods
17.
Article in English | MEDLINE | ID: mdl-38761200

ABSTRACT

OBJECTIVE: To compare the clinical efficacy of the minimally invasive locking plate technique (Philos plate) and interlocking intramedullary nailing technique (TRIGEN intramedullary nail) in the treatment of Neer two-part and three-part proximal humeral fractures. METHODS AND MATERIALS: The clinical data of 60 patients with Neer two-part and three-part proximal humerus fractures admitted to the hospital from April 2017 to April 2021 were retrospectively analyzed. Thirty-two patients were treated with the minimally invasive locking plate technique (minimally invasive plate group), and 28 patients were treated with the interlocking intramedullary nailing technique (intramedullary nail group). The operation time, intraoperative blood loss, incision length, fracture healing time, and postoperative complications were compared between the two groups. The ASES score and Constant-Murley score were used to evaluate the shoulder joint function of the two groups one year after surgery. RESULTS: All 60 patients were followed up for 12 to 24 months, with an average of 16 months. There was no significant difference in operation time, intraoperative blood loss, incision length, or fracture healing time between the two groups (P > 0.05). The incidence of postoperative complications in the intramedullary nail group was significantly lower than that in the minimally invasive steel plate group, and the difference between the groups was statistically significant (P < 0.05). There was no significant difference in the ASES score or Constant-Murley score between the two groups one year after surgery (P > 0.05). CONCLUSION: The use of the minimally invasive locking plate technique and interlocking intramedullary nailing technique in the treatment of Neer two-part and three-part proximal humerus fractures has the advantages of a small incision, less blood loss, and a high fracture healing rate, and both can achieve satisfactory clinical effects. The internal nail technique is more convenient than the minimally invasive locking plate technique in controlling postoperative complications.

18.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653754

ABSTRACT

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Nucleus , SOX9 Transcription Factor , Transcription Factors , YAP-Signaling Proteins , Humans , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Active Transport, Cell Nucleus/genetics , Mice , Cell Line, Tumor , Animals , Repressor Proteins/genetics , Repressor Proteins/metabolism
19.
Sleep Breath ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627339

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) has been shown to be an important risk factor for cardiovascular disease (CVD), and intermittent hypoxia is an important pathogenetic factor for it. In the clinic, it was found that most CVD patients combined with OSA were also combined with solitary pulmonary nodules (SPN) or thyroid nodules (TN). Are these disorders related to intermittent hypoxia? One study showed that intermittent hypoxia is a pathogenic factor for lung cancer in mice, but there have been no clinical reports. So we conducted a retrospective study to explore whether intermittent hypoxia caused by OSA increases the incidence of SPN, TN, and other disorders. METHODS: We selected 750 patients with cardiovascular disease (CVD), who were divided into the control group and the OSA group according to the result of portable sleep monitoring. Retrospectively analyzed the comorbidities that patients with OSA are prone to and explored the correlation between OSA and those comorbidities. RESULTS: The incidence of SPN, TN, cervical spondylosis, and carotid-artery plaques was higher in the OSA group than in the control group. These diseases are significantly associated with OSA (p < 0.05), and their incidence increased with an elevated apnea-hypopnea index. After excluding interference from age, gender, BMI, smoking history, history of lung disease, and history of tumors, OSA showed a significant correlation with SPN. After excluding age, gender, BMI, and thyroid disease, OSA was associated with TN. Patients with comorbidities have lower nocturnal oxygen saturation and more extended periods of apnea. Logistic multiple regression results revealed that male, advanced age, obesity, CS, and nasal septum deviation were independent risk factors for OSA. CONCLUSIONS: Patients combined with OSA may further develop more comorbidities, such as SPN, TN, and carotid-artery plaques. It may be related to intermittent hypoxia caused by OSA.

20.
Front Pediatr ; 12: 1376196, 2024.
Article in English | MEDLINE | ID: mdl-38633323

ABSTRACT

Objective: This study was conducted to explore the risk factors for the prognosis and recurrence of ureteropelvic junction obstruction (UPJO). Methods: The correlation of these variables with the prognosis and recurrence risks was analyzed by binary and multivariate logistic regression. Besides, a nomogram was constructed based on the multivariate logistic regression calculation. After the model was verified by the C-statistic, the ROC curve was plotted to evaluate the sensitivity of the model. Finally, the decision curve analysis (DCA) was conducted to estimate the clinical benefits and losses of intervention measures under a series of risk thresholds. Results: Preoperative automated peritoneal dialysis (APD), preoperative urinary tract infection (UTI), preoperative renal parenchymal thickness (RPT), Mayo adhesive probability (MAP) score, and surgeon proficiency were the high-risk factors for the prognosis and recurrence of UPJO. In addition, a nomogram was constructed based on the above 5 variables. The area under the curve (AUC) was 0.8831 after self cross-validation, which validated that the specificity of the model was favorable. Conclusion: The column chart constructed by five factors has good predictive ability for the prognosis and recurrence of UPJO, which may provide more reasonable guidance for the clinical diagnosis and treatment of this disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...