Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Am J Drug Alcohol Abuse ; : 1-16, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39321414

ABSTRACT

Background: Alcoholic liver disease (ALD) significantly contributes to global morbidity and mortality. The role of inflammatory cytokines in alcohol-induced liver injury is pivotal yet not fully elucidated.Objectives: To establish a causal link between inflammatory cytokines and ALD using a Mendelian Randomization (MR) framework.Methods: This MR study utilized genome-wide significant variants as instrumental variables (IVs) for assessing the relationship between inflammatory cytokines and ALD risk, focusing on individuals of European descent. The approach was supported by comprehensive sensitivity analyses and augmented by bioinformatics tools including differential gene expression, protein-protein interactions (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and analysis of immune cell infiltration.Results: Our findings reveal that increased levels of stem cell growth factor beta (SCGF-ß, beta = 0.141, p = .032) and interleukin-7 (IL-7, beta = 0.311, p = .002) are associated with heightened ALD risk, whereas higher levels of macrophage inflammatory protein-1α (MIP-1α, beta = -0.396, p = .004) and basic fibroblast growth factor (bFGF, beta = -0.628, p = .008) are linked to reduced risk. The sensitivity analyses support these robust causal relationships. Bioinformatics analyses around inflammatory cytokine-associated SNP loci suggest multiple pathways through which cytokines influence ALD.Conclusion: The genetic evidence from this study convincingly demonstrates that certain inflammatory cytokines play directional roles in ALD pathogenesis. These findings provide insights into the complex biological pathways involved and underscore the potential for developing targeted therapies that modulate these inflammatory responses, ultimately improving clinical outcomes for ALD patients.

2.
Nutr Rev ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340837

ABSTRACT

CONTEXT: Sarcopenia has been identified as a potential predictor of poor prognosis in various types of cancer. However, the impact of pretreatment sarcopenia and the reduction of skeletal muscle mass during treatment on survival outcomes of patients with cervical cancer is still not well understood. OBJECTIVE: This meta-analysis was conducted to investigate the impact of pretreatment sarcopenia and treatment-associated muscle loss on survival outcomes in patients with cervical cancer. DATA SOURCES: The PubMed, EMBASE, Web of Science, and Cochrane Library databases were searched for studies exploring the relationship between muscle loss and the prognosis of cervical cancer until January 1, 2023. DATA EXTRACTION: The hazard ratios (HRs) and 95% CIs for overall survival (OS) and progression-free survival (PFS) were extracted. DATA ANALYSIS: The data were analyzed using R software. The studies' quality was assessed using the Quality in Prognostic Studies tool. Twelve observational studies involving 1498 patients with cervical cancer were included in the analysis, with a prevalence of sarcopenia ranging from 24.8% to 57.5%. Sarcopenia was an independent predictor of poor OS (HR, 1.68; 95% CI, 1.28-2.21; P < .01) and PFS (HR, 1.53; 95% CI, 1.19-1.98; P < .01) in patients with cervical cancer. Additionally, the decrease in skeletal muscle during treatment was also significantly related to the OS (HR, 4.46; 95% CI, 2.87-6.94; P < .01) and PFS (HR, 2.89; 95% CI. 1.83-4.55; P < .01). CONCLUSIONS: The prevalence of pretreatment sarcopenia was high among patients with cervical cancer. Pretreatment sarcopenia and skeletal muscle loss during treatment both negatively affected prognosis in cervical cancer.

3.
Sci Rep ; 14(1): 15717, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977823

ABSTRACT

Obesity is a global health concern and independent risk factor for cancers including hepatocellular carcinoma (HCC). However, evidence on the causal links between obesity and HCC is limited and inconclusive. This study aimed to investigate the causal relationship between obesity-related traits and HCC risk and explore underlying mechanisms using bioinformatics approaches. Two-sample Mendelian randomization analysis was conducted leveraging publicly available genome-wide association study summary data on obesity traits (body mass index, body fat percentage, waist circumference, waist-to-hip ratio, visceral adipose tissue volume) and HCC. Associations of obesity with primary mechanisms (insulin resistance, adipokines, inflammation) and their effects on HCC were examined. Differentially expressed genes in obesity and HCC were identified and functional enrichment analyses were performed. Correlations with tumor microenvironment (TME) and immunotherapy markers were analyzed. Genetically predicted higher body mass index and body fat percentage showed significant causal relationships with increased HCC risk. Overall obesity also demonstrated causal links with insulin resistance, circulating leptin levels, C-reactive protein levels and risk of severe insulin resistant type 2 diabetes. Four differentially expressed genes (ESR1, GCDH, FAHD2A, DCXR) were common in obesity and HCC. Enrichment analyses indicated their roles in processes like RNA capping, viral transcription, IL-17 signaling and endocrine resistance. They exhibited negative correlations with immune cell infiltration and immunotherapy markers in HCC. Overall obesity likely has a causal effect on HCC risk in Europeans, possibly via influencing primary mechanisms. The identified differentially expressed genes may be implicated in obesity-induced hepatocarcinogenesis through regulating cell cycle, inflammation and immune evasion. Further research on precise mechanisms is warranted.


Subject(s)
Carcinoma, Hepatocellular , Genome-Wide Association Study , Liver Neoplasms , Obesity , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Obesity/complications , Obesity/genetics , Body Mass Index , Risk Factors , Insulin Resistance/genetics , Tumor Microenvironment/genetics , Mendelian Randomization Analysis
4.
Article in English | MEDLINE | ID: mdl-38829566

ABSTRACT

Salmonella typhimurium (S. typhimurium) constitutes a major public health concern. We have previously proven that Lactobacillus crispatus 7-4 (L. crispatus 7-4) can inhibit the growth of S. typhimurium and thus can be used as a biocontrol strategy to suppress foodborne S. typhimurium infections. However, the inhibitory effect and in-depth mechanism of L. crispatus 7-4 remain to be elucidated. In this study, we found that L. crispatus 7-4 can protect against S. typhimurium-induced ileum injury by promoting intestinal barrier integrity, maintaining intestinal mucosal barrier homeostasis, and reducing intestinal inflammatory response. Furthermore, we demonstrated that this probiotic strain can increase the abundance of Lactobacillus spp. to maintain microbial homeostasis and simultaneously increase the amount of γ­glutamylcysteine (γ-GC) by activating the glutathione metabolic pathway. The increased γ-GC promoted the transcription of Nrf2 target genes, thereby improving the host antioxidant level, reducing reactive oxygen species (ROS) accumulation, and removing pro-inflammatory cytokines. In other words, L. crispatus 7-4 could activate the enterocyte Nrf2 pathway by improving γ-GC to protect against S. typhimurium-induced intestinal inflammation and oxidative damage.

5.
World J Gastrointest Oncol ; 16(4): 1319-1333, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660662

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) is a highly malignant biliary tract cancer with poor prognosis. Previous studies have implicated the gut microbiota in CCA, but evidence for causal mechanisms is lacking. AIM: To investigate the causal relationship between gut microbiota and CCA risk. METHODS: We performed a two-sample mendelian randomization study to evaluate potential causal associations between gut microbiota and CCA risk using genome-wide association study summary statistics for 196 gut microbial taxa and CCA. Genetic variants were used as instrumental variables. Multiple sensitivity analyses assessed result robustness. RESULTS: Fifteen gut microbial taxa showed significant causal associations with CCA risk. Higher genetically predicted abundance of genus Eubacteriumnodatum group, genus Ruminococcustorques group, genus Coprococcus, genus Dorea, and phylum Actinobacteria were associated with reduced risk of gallbladder cancer and extrahepatic CCA. Increased intrahepatic CCA risk was associated with higher abundance of family Veillonellaceae, genus Alistipes, order Enterobacteriales, and phylum Firmicutes. Protective effects against CCA were suggested for genus Collinsella, genus Eisenbergiella, genus Anaerostipes, genus Paraprevotella, genus Parasutterella, and phylum Verrucomicrobia. Sensitivity analyses indicated these findings were reliable without pleiotropy. CONCLUSION: This pioneering study provides novel evidence that specific gut microbiota may play causal roles in CCA risk. Further experimental validation of these candidate microbes is warranted to consolidate causality and mechanisms.

6.
ACS Appl Mater Interfaces ; 16(15): 18591-18607, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564431

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused a global pandemic since its onset in 2019, and the development of effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce potent and long-lasting immunity remains a priority. Herein, we prepared two Lactobacillus exopolysaccharide (EPS) nanoparticle adjuvants (NPs 7-4 and NPs 8-2) that were constructed by using sulfation-modified EPS and quaternization-modified chitosan. These two NPs displayed a spherical morphology with sizes of 39 and 47 nm. Furthermore, the zeta potentials of NPs 7-4 and NPs 8-2 were 50.40 and 44.40 mV, respectively. In vitro assays demonstrated that NPs could effectively adsorb antigenic proteins and exhibited a sustained release effect. Mouse immunization tests showed that the NPs induced the expression of cytokines and chemokines at the injection site and promoted the uptake of antigenic proteins by macrophages. Mechanically, the NPs upregulated the expression of pattern recognition receptors (toll-like receptors and nod-like receptors) and activated the immune response of T cells and the production of neutralizing antibodies. In addition, the NP adjuvants had favorable immune-enhancing effects in cats, which are of great significance for controlling the trans-host transmission and re-endemicity of SARS-CoV-2. Overall, we demonstrated that NP-adjuvanted SARS-CoV-2 receptor binding domain proteins could induce robust specific humoral and cellular immunity.


Subject(s)
COVID-19 , Nanoparticles , Animals , Mice , Cats , COVID-19 Vaccines , SARS-CoV-2 , Sulfates/pharmacology , Adjuvants, Immunologic/chemistry , Nanoparticles/chemistry , Adjuvants, Pharmaceutic/pharmacology , Immunity, Cellular , Vaccines, Subunit/pharmacology
7.
Sci Total Environ ; 918: 170819, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38340824

ABSTRACT

Spray drift is inevitable in chemical applications, drawing global attention because of its potential environmental pollution and the risk of exposing bystanders to pesticides. This issue has become more pronounced with a growing consensus on the need for enhanced environmental safeguards in agricultural practices. Traditionally, spray drift measurements, crucial for refining spray techniques, relied on intricate, time-consuming, and labor-intensive sampling methods utilizing passive collectors. In this study, we investigated the feasibility of using close-range remote sensing technology based on Light Detection and Ranging (LiDAR) point clouds to implement drift measurements and drift reduction classification. The results show that LiDAR-based point clouds vividly depict the spatial dispersion and movement of droplets within the vertical plane. The capability of LiDAR to accurately determine drift deposition was demonstrated, evident from the high R2 values of 0.847, 0.748 and 0.860 achieved for indoor, wind tunnel and field environments, respectively. Droplets smaller than 100 µm and with a density below 50 deposits·cm-2·s-1 posed challenges for LiDAR detection. To address these challenges, the use of multichannel LiDAR with higher wavelengths presents a potential solution, warranting further exploration. Furthermore, we found a satisfactory consistency when comparing the drift reduction classification calculated from LiDAR measurements with those obtained though passive collectors, both in indoor tests and the unmanned air-assisted sprayer (UAAS) field test. However, in environments with less dense clouds of larger droplets, a contradiction emerged between higher drift deposition and lower scanned droplet counts, potentially leading to deviations in the calculated drift potential reduction percentage (DPRP). This was exemplified in a field test using an unmanned aerial vehicle sprayer (UAVS). Our findings provide valuable insights into the monitoring and quantification of pesticide drift at close range using LiDAR technology, paving the way for more precise and efficient drift assessment methodologies.

8.
Glob Chang Biol ; 30(1): e17136, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273501

ABSTRACT

As global average surface temperature increases, extreme climatic events such as heatwaves are becoming more frequent and intense, which can drive biodiversity responses such as rapid population declines and/or shifts in species distributions and even local extirpations. However, the impacts of extreme climatic events are largely ignored in conservation plans. Birds are known to be susceptible to heatwaves, especially in dryland ecosystems. Understanding which birds are most vulnerable to heatwaves, and where these birds occur, can offer a scientific basis for adaptive management and conservation. We assessed the relative vulnerability of 1196 dryland bird species to heatwaves using a trait-based approach. Among them, 888 bird species are estimated to be vulnerable to heatwaves (170 highly vulnerable, eight extremely vulnerable), of which ~91% are currently considered non-threatened by the IUCN, which suggests that many species will likely become newly threatened with intensifying climate change. We identified the top three hotspot areas of heatwave-vulnerable species in Australia (208 species), Southern Africa (125 species) and Eastern Africa (99 species). Populations of vulnerable species recorded in the Living Planet Database were found to be declining significantly faster than those of non-vulnerable species (p = .048) after heatwaves occurred. In contrast, no significant difference in population trends between vulnerable and non-vulnerable species was detected when no heatwave occurred (p = .34). This suggests that our vulnerability framework correctly identified vulnerable species and that heatwaves are already impacting the population trends of these species. Our findings will help prioritize heatwave-vulnerable birds in dryland ecosystems in risk mitigation and adaptation management as the frequency of heatwaves accelerates in the coming decades.


Subject(s)
Biodiversity , Ecosystem , Animals , Australia , Birds/physiology , Climate Change
9.
J Int Med Res ; 52(1): 3000605231221361, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38263929

ABSTRACT

OBJECTIVE: This study aimed to perform an integrated pan-cancer analysis to characterize the expression patterns, prognostic value, genetic alterations, and immunologic roles of transforming growth factor beta 1 (TGFB1) across diverse human cancer types. METHODS: Bioinformatics analyses were conducted using multiple public databases including The Cancer Genome Atlas, Genotype-Tissue Expression, Clinical Proteomic Tumor Analysis Consortium, TIMER2, GEPIA2, cBioPortal, StringDB, and others. Differential expression, survival, immune correlation, and protein interaction network analyses were performed. RESULTS: TGFB1 was overexpressed in several tumor types compared with that in normal tissues. High TGFB1 expression was associated with an advanced stage and poorer prognosis in certain cancers. TGFB1 mutations occurred in 1.3% of 10,967 cases surveyed. TGFB1 expression correlated with tumor-infiltrating immune cells and immunotherapy-related genes. CONCLUSIONS: This comprehensive multi-omics analysis revealed the complex expression and prognostic landscape of TGFB1 across cancers. TGFB1 is emerging as a potential immunotherapeutic target in certain contexts. Further research should elucidate its multifaceted tumor-promoting and tumor-suppressive mechanisms. Our pan-cancer analysis provides new insights into TGFB1 as a prognostic biomarker and immunotherapeutic target in human cancers, and our findings may guide future preclinical and clinical investigations of TGFB1-directed therapies.


Subject(s)
Neoplasms , Proteomics , Humans , Prognosis , Computational Biology , Databases, Factual , Transforming Growth Factor beta1
10.
Probiotics Antimicrob Proteins ; 16(2): 623-635, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37043165

ABSTRACT

Antibiotic-resistant bacteria are prevalent in husbandry around the world due to the abuse of antibiotic growth promoters (AGPs); therefore, it is necessary to find alternatives to AGPs in animal feed. Among all the candidates, probiotics are promising alternatives to AGPs against Salmonella infection. The anti-Salmonella effects of three probiotic strains, namely, Lactobacillus crispatus 7-4, Lactobacillus johnsonii 3-1, and Pediococcus acidilactici 20-1, have been demonstrated in our previous study. In this study, we further obtained the alginate beads containing compound probiotics, namely, microencapsulate probiotics (MP), and evaluated its regulatory effect on the health of broilers. We incubated free and microencapsulate probiotics in simulated gastric and intestinal juice for 2 h, and the results showed that compared to free probiotics, encapsulation increased tolerance of compound probiotics in the simulated gastrointestinal condition. We observed that the application of probiotics, especially MP, conferred protective effects against Salmonella typhimurium (S.Tm) infection in broilers. Compared to the S.Tm group, the MP could promote the growth performance (p < 0.05) and reduce the S.Tm load in intestine and liver (p < 0.05). In detail, MP pretreatment could modulate the cecal microflora and upregulate the relative abundance of Lactobacillus and Enterobacteriaceae. Besides, MP could reduce the inflammation injury of the intestine and liver, reduce the pro-inflammatory cytokines (IL-6, TNF-α, IL-1ß) expression, and induce of anti-inflammatory cytokine (IL-10) expression. Furthermore, MP could inhibit NLRP3 pathway in ileum, thereby attenuating S.Tm-induced inflammation. In conclusion, MP could be a new feeding supplementation strategy to substitute AGPs in poultry feeding.


Subject(s)
Probiotics , Salmonella Infections, Animal , Animals , Salmonella typhimurium/physiology , Chickens , Salmonella Infections, Animal/prevention & control , Salmonella Infections, Animal/microbiology , Probiotics/pharmacology , Cytokines , Inflammation , Anti-Bacterial Agents
11.
Onco Targets Ther ; 16: 923-935, 2023.
Article in English | MEDLINE | ID: mdl-37965584

ABSTRACT

Background: Pancreatic cancer is a deadly disease with a low five years survival rate, and chemotherapy remains the standard treatment for advanced cases. However, the efficacy of chemotherapy alone is limited, and there is a need for new treatment options. Recently, immune checkpoint inhibitors (ICIs), particularly programmed death-1 (PD-1) inhibitors, have shown promising results in various cancers, including pancreatic cancer. In this study, we explore the safety and efficacy of PD-1 inhibitors in combination with chemotherapy for advanced pancreatic cancer. Materials and Methods: A retrospective analysis was conducted on clinical data from 27 patients with advanced pancreatic cancer who were administered a combination of anti-PD-1 antibody and gemcitabine plus nab-paclitaxel (GnP) regimen. The study evaluated the safety of the treatment as well as the objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). Results: In this study, treatment with a combination of anti-PD-1 antibody and GnP regimen for pancreatic cancer resulted in partial response (PR) for 10 out of 27 (37.04%) patients, stable disease (SD) for 10 (37.04%) patients, and progressive disease (PD) for 7 (25.92%) patients. The study found that the median OS (mOS) for these patients was 16.4 months [standard error (SE) = 1.117, 95% confidence interval (CI) 14.211-18.589], while the median PFS (mPFS) was 6.4 months (SE = 1.217, 95% CI 3.981-8.752). Subgroup analysis revealed that pancreatic cancer patients' Eastern Cooperative Oncology Group (ECOG) performance status (PS) (0 vs 1) and treatment cycles (≤6 cycles vs >6 cycles) significantly affected OS and PFS. Patients experienced mostly grade 1-2 adverse events (AEs), which were relieved through clinical treatment. Conclusion: The combination of GnP with anti-PD-1 antibodies shows promise as a potential treatment option for advanced pancreatic cancer.

12.
J Nutr Biochem ; 121: 109436, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37666477

ABSTRACT

We have previously proven that the environmental toxin could accelerate the development and progression of nonalcoholic steatohepatitis (NASH). However, the underlying mechanism associated with such excessive inflammation hasn't been fully illustrated. Although Genistein has been well accepted for its capability in anti-inflammation and anti-oxidation, its effect in ameliorating contaminants-induced NASH still needs to be identified. In this study, using chickens and primary chicken hepatocytes as models, we found that NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome were over-activated in bromoacetic acid (BAA, one of the typical environmental toxins)-induced NASH, characterized by the infiltration of inflammatory cell, and the increase of NLRP3, Caspase-1 p20, and cytokines (IL-1ß, IL-18) expressions. Interestingly, genistein treatment could recover these changes, with the signs of restored activities of anti-oxidases, decreased expressions of NLRP3 inflammasome components, and increased levels of elements in phase I metabolic system. The detailed mechanism was that, via up-regulating aryl hydrocarbon receptor (AHR), genistein lifted mRNA levels of Cyp1-related genes to reconstruct cytochrome P450 (CYP450) systems, and the raised AHR negatively regulated NLRP3 inflammasome activity to relieve inflammation. More important, the interaction and co-localization between AHR and NLRP3 was first proved, and genistein could promote the levels of AHR that interacted with NLRP3, which thereafter blocked the activation of NLRP3 inflammasome. Conclusively, in this research, we confirmed the AHR-dependent protective role of genistein in environmental toxin-linked NASH, which shed light on the potential precautions for contaminants-induced NASH.

13.
Materials (Basel) ; 16(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37445000

ABSTRACT

High-pressure torsion (HPT) is an effective severe plastic deformation method to produce ultrafine-grained (UFG) and nanocrystalline (NC) materials. In the past, most studies have focused on the evolutions in the microstructure, texture and mechanical properties of HPT-deformed materials at peripheral regions. The corresponding evolutions at a special area were observed in this study to reveal the potential plastic deformation mechanism for face-centred cubic (FCC) material with high stacking fault energy. A decreasing trend was found in grain size, and the final grain size was less than 1 µm. However, close observation revealed that the general trend could be divided into different sub-stages, in which grain elongation and grain fragmentation were dominant, respectively. Additionally, microhardness demonstrated a non-linear increase with the development of plastic deformation. Finally, the microhardness reached a high level of ~64 HV. At the early stages of HPT, the C component was transformed into a cube component, suggesting the material flows around the shear plane normal (SPN) axis at these stages. However, finally they will be replaced by ideal simple shear orientations.

14.
Nutr Cancer ; 75(6): 1413-1426, 2023.
Article in English | MEDLINE | ID: mdl-37140894

ABSTRACT

A few previous studies have investigated the prognostic value of the prognostic nutritional index (PNI) in patients treated with immune checkpoint inhibitors (ICIs); however, the results are inconsistent. Therefore, this study aimed to clarify the prognostic significance of PNI. The PubMed, Embase, and Cochrane Library databases were searched. A meta-analysis of the impact of PNI on overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and rate of adverse events (AEs) in patients treated with ICIs was performed. Twenty-three studies involving 2,386 patients were included. Low PNI was associated with significantly poor OS (hazard ratio [HR] = 2.26, 95% confidence interval [CI]: 1.81-2.82, P < .001) and short PFS (HR = 1.75, 95% CI: 1.54-1.99, P < .001). Patients with low PNI tended to have a low ORR (odds ratio [OR] = 0.47, 95% CI: 0.34-0.65, P < .001) and DCR (OR = 0.43, 95% CI: 0.34-0.56, P < .001). However, the subgroup analysis demonstrated no significant association between PNI and survival time in patients receiving a programmed death ligand-1 inhibitor. PNI was significantly associated with survival time and treatment efficacy in patients treated with ICIs.


Subject(s)
Neoplasms , Nutrition Assessment , Humans , Prognosis , Immune Checkpoint Inhibitors/adverse effects , Neoplasms/drug therapy , Treatment Outcome
15.
Front Oncol ; 13: 1120515, 2023.
Article in English | MEDLINE | ID: mdl-37064156

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is a primary malignant tumor responsible for approximately 90% of all liver cancers in humans, making it one of the leading public health problems worldwide. The gut microbiota is a complex microbial ecosystem that can influence tumor formation, metastasis, and resistance to treatment. Therefore, understanding the potential mechanisms of gut microbiota pathogenesis is critical for the prevention and treatment of HCC. Materials and methods: A search was conducted in the Web of Science Core Collection (WoSCC) database for English literature studies on the relationship between gut microbiota and HCC from 2011 to 2022. Bibliometric analysis tools such as VOSviewer, CiteSpace, and R Studio were used to analyze global trends and research hotspots in this field. Results: A total of 739 eligible publications, comprising of 383 articles and 356 reviews, were analyzed. Over the past 11 years, there has been a rapid increase in the annual number of publications and average citation levels, especially in the last five years. The majority of published articles on this topic originated from China (n=257, 34.78%), followed by the United States of America (n=203, 27.47%), and Italy (n=85, 11.50%). American scholars demonstrated high productivity, prominence, and academic environment influence in the research of this subject. Furthermore, the University of California, San Diego published the most papers (n=24) and had the highest average citation value (value=152.17) in the study of the relationship between gut microbiota and HCC. Schnabl B from the USA and Ohtani N from Japan were the authors with the highest number of publications and average citation value, respectively. Conclusion: In recent years, research on the gut microbiota's role in HCC has made rapid progress. Through a review of published literature, it has been found that the gut microbiota is crucial in the pathogenesis of HCC and in oncotherapy.

16.
Front Nutr ; 10: 1000326, 2023.
Article in English | MEDLINE | ID: mdl-36937347

ABSTRACT

Background: Growing evidence suggests that nutritional status and inflammation are associated with survival in various cancers. This study aimed to evaluate the prognostic value of the prognostic nutritional index (PNI), geriatric nutritional risk index (GNRI), and systemic inflammatory indexes (neutrophil/lymphocyte ratio [NLR], monocyte/lymphocyte ratio [MLR], and platelet/lymphocyte ratio [PLR]) in patients with stage IIB-III cervical cancer receiving radiotherapy. Results: The ideal cutoff values for the PNI, GNRI, NLR, MLR, and PLR were 48.3, 97.04, 2.8, 0.41, and 186.67, respectively. Low PNI and GNRI scores were associated with poor OS and PFS. High NLR, MLR, and PLR also predicted inferior 5-year OS and PFS rates in patients with stage IIB-III cervical cancer. Multivariate Cox regression analysis identified tumor size, histological type, stage, number of metastatic lymph nodes, PNI, GNRI, NLR, PLR, and MLR as significant prognostic factors for OS and PFS. Conclusions: The current findings suggest that the PNI, GNRI, NLR, PLR, and MLR are essential parameters for predicting prognosis in patients with stage IIB-III cervical cancer receiving radiotherapy.

17.
Article in English | MEDLINE | ID: mdl-36361268

ABSTRACT

With global warming, China's agricultural products are facing severe production conditions and a complex international trade situation. In order to clarify the relationship between climate change and China's agricultural trade, this paper uses the GTAP model to explore the impact of climate change on China's agricultural trade from the perspectives of agricultural production and supply, energy substitution and trade policy. The results show that: (1) From the overall effect, the production supply risk and energy substitution risk caused by climate change have a positive impact on China's import trade, among which the energy substitution risk has brought about an import trade growth of 38.050%, the production supply risk has brought about an import trade growth of 12.635%, and the trade policy risk has a negative impact, bringing about an import trade decline of 12.589%. (2) Under the impact of production and supply risks caused by climate change, the import volume of different industrial sectors has increased by varying degrees, including livestock products (16.521%) > food crops (14.162%) > cash crops (7.220%). The increase in import trade mainly comes from the United States (10.731%), Canada (10.650%) and Australia (9.455%). (3) Under the impact of energy substitution risk caused by climate change, the increase in import trade was concentrated in food crops (48.144%) and livestock products (42.834%), mainly from the United States (57.098%), the European Union (55.014%) and Canada (53.508%). (4) Under the impact of trade policy risks caused by climate change, the import trade of different industrial sectors showed a downward trend, with cash crops (13.039%) > livestock products (12.588%) > cash crops (12.140%). The countries and regions with significant decline in import trade were ASEAN (-46.131%) and the United States (-28.028%). The trade deficit shifted to surplus, and the terms of trade were improved. Therefore, this paper suggests that we should deal with the impact of climate change on agricultural trade by developing "climate smart" agriculture, actively responding to low-carbon trade measures, and establishing an agricultural trade promotion mechanism to address the risk of climate change.


Subject(s)
Climate Change , Commerce , Internationality , Agriculture , Crops, Agricultural , China
18.
Cell Rep ; 41(2): 111454, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36223738

ABSTRACT

Estrogen receptor ß (ERß) and NOD-like receptor family pyrin domain containing 6 (NLRP6) are highly expressed in intestinal tissues. Loss of ERß and NLRP6 exacerbate colitis in mouse models; however, the underlying mechanisms are incompletely understood. Here, we report that ERß directly activates the NLRP6 gene expression via binding to estrogen responsive element of Nlrp6 gene promoter. ERß also physically interacts with the NLRP6 nucleotide-binding domain and promotes NLRP6 inflammasome assembly. The ERß-NLRP6 axis then interacts with multiple autophagy-related proteins, including ULK1, BECN1, ATG16L1, LC3B, and p62, and affects the autophagosome biogenesis and autophagic flux. Finally, NLRP6-mediated autophagy suppresses the inflammatory response by promoting the K48-linked polyubiquitination of ASC, Casp-1 p20, IL-1ß, TNF-α, and prohibitin-2. Thus, ERß-NLRP6 direct an anti-inflammatory response by promoting autophagy. Our work uncovers an ERß-NLRP6-autophagy pathway as a regulatory mechanism that maintains intestinal epithelial cell homeostasis and facilitates tissue repair in colitis.


Subject(s)
Colitis , Estrogen Receptor beta , Receptors, Cell Surface , Animals , Anti-Inflammatory Agents , Autophagy/genetics , Colitis/genetics , Estrogen Receptor beta/genetics , Estrogens , Inflammasomes/metabolism , Mice , NLR Proteins , Nucleotides , Receptors, Cell Surface/genetics , Tumor Necrosis Factor-alpha
19.
Food Funct ; 13(20): 10501-10515, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36148688

ABSTRACT

In this study, a novel heteropolysaccharide (EPS 7-4) with a molecular weight of 53 387 Da was isolated from Lactobacillus crispatus, and it was mainly composed of mannose (36.9%) and glucose (30.8%). EPS 7-4 showed excellent inhibitory effects on the proliferation, biofilm formation, and virulence factor gene expression of Salmonella typhimurium (S. typhimurium) by disrupting the integrity of the bacterial wall. Furthermore, EPS 7-4 can effectively restrict bacterial translocation, upregulate the abundance of Lactobacillus spp. and Bifidobacterium spp., and alleviate the S. typhimurium induced severe inflammatory response in the intestinal tract of mice. Besides, we demonstrated that EPS 7-4 can protect mice by inhibiting S. typhimurium induced pyroptosis, with the mechanism that EPS 7-4 affects ASC oligomerization during inflammasome-mediated pyroptosis. Therefore, due to its excellent anti-bacterial and anti-inflammatory abilities, EPS 7-4 is a promising health regulator owing to its excellent antibacterial and anti-inflammatory abilities.


Subject(s)
Lactobacillus crispatus , Salmonella typhimurium , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Glucose/metabolism , Inflammasomes/metabolism , Mannose/metabolism , Mice , Pyroptosis , Virulence Factors/metabolism
20.
Chem Biol Interact ; 365: 110115, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35988748

ABSTRACT

The bromoacetic acid (BAA) is one of the most teratogenic and neurotoxic disinfection byproducts. Birds take environmental water as their habitat and are inevitably affected by BAA in the environment. However, the neurotoxicity caused by BAA in birds has not been reported and the mechanism remains unclear. In this study, we chose chickens as the avian model to explore the effects of different concentrations of BAA on the brain tissues. Here, we selected the 3 µg/L dose of BAA detected in Tai Lake basin as a reference, and designed 1-, 100-, and 1000-fold of the environmental exposure dose as the experimental doses to explore the neurotoxicity of BAA in birds. Results showed that BAA increased the number of pyknotic nuclear neurons, deformed vascular sheaths, and glial cells in the brain. BAA inhibited the activity of antioxidant enzymes and the expression of antioxidant genes. With the increase of BAA concentration, the oxidative stress-responsive transcription factor NF-κB was activated. Furthermore, BAA remarkably changed the expression of lipid metabolism related genes (i.e., acc, gpat, hmgr, pparα, cpt1, and ampkα). Importantly, BAA decreased the mRNA and protein expression levels of autophagy-related genes (i.e., atg5, ulk1, beclin1, and lc3). Meantime, BAA increased the mRNA and protein levels of apoptotic and pro-apoptotic genes, such as p53, bax, cytochrome c, caspase-9, and caspase-3. Overall, our study provided new insights into the potential neurotoxic effects of BAA in birds, which was important for the clinical monitoring and prevention of BAA.


Subject(s)
Chickens , NF-kappa B , Acetates , Animals , Antioxidants/metabolism , Brain/metabolism , Chickens/metabolism , NF-kappa B/metabolism , Oxidative Stress , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL