Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(4)2023 02 11.
Article in English | MEDLINE | ID: mdl-36831257

ABSTRACT

The ubiquitin-proteasome system (UPS) plays an important role in virus-host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana benthamiana against potato virus Y (PVY) infection. PVY infection strongly induced NbMLP43 transcription but decreased NbMLP43 at the protein level. We verified that B-box zinc finger protein 24 (NbBBX24) interacted directly with NbMLP43 and that NbBBX24, a light responsive factor, acted as an essential intermediate component targeting NbMLP43 for its ubiquitination and degradation via the UPS. PVY, tobacco mosaic virus, (TMV) and cucumber mosaic virus (CMV) infections could promote NbMLP43 ubiquitination and proteasomal degradation to enhance viral infection. Ubiquitination occurred at lysine 38 (K38) within NbMLP43, and non-ubiquitinated NbMLP43(K38R) conferred stronger resistance to RNA viruses. Overall, our results indicate that the novel NbMLP43 protein is a target of the UPS in the competition between defense and viral anti-defense and enriches existing theoretical studies on the use of UPS by viruses to promote infection.


Subject(s)
Nicotiana , Plant Diseases , Potyvirus , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitination , Nicotiana/virology , Plant Diseases/virology , Plant Proteins/metabolism , Potyvirus/pathogenicity
2.
BMC Genomics ; 23(1): 621, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038823

ABSTRACT

BACKGROUND: Lysine 2-hydroxyisobutyrylation (Khib) is a novel and conserved post-translational modification (PTM). Frankliniella occidentalis are economically important agricultural pests globally and also notorious for vectoring destructive plant viruses. To better study the disease transmission mechanism of F. occidentalis, it is necessary to conduct in-depth analysis of it. So far, no Khib modification of insects has been reported. RESULTS: In this study, a proteome-wide analysis of Khib modifications in F. occidentalis was analyzed for the first time through the combination of high performance liquid chromatography fractionation technology and 2-hydroxyisobutyrylated peptide enrichment and other advanced technologies, 4093 Khib sites were identified on 1125 modified proteins. Bioinformatics and functional enrichment analyses showed that Khib-modified proteins were significantly enriched in many cell compartments and pathways, especially related to various cellular components and biological processes, and were more concentrated in ribosomes and proteasome subunits, involved in energy metabolism, protein synthesis and degradation, compared to the other nine species including Japonica rice, Homo sapiens, P. patens, Botrytis, Ustilaginoidea virens, Saccharomyces cerevisiae, T. gondii, C. albicans, and F. oxysporum. And Khib sites on virus-interacting insect proteins were discovered for the first time, such as cyclophilin and endoCP-GN. CONCLUSIONS: After three repeated experiments, we found a total of 4093 Khib sites on 1125 proteins. These modified proteins are mainly concentrated in ribosomes and proteasome subunits, and are widely involved in a variety of critical biological activities and metabolic processes of F. occidentalis. In addition, for the first time, Khib modification sites are found on the proteome of F. occidentalis, and these sites could be acted as for the virus interaction, including cyclophilin and endoCP-GN. The global map of 2-hydroxyisobutyrylation in thrips is an invaluable resource to better understand the biological processes of thrips and provide new means for disease control and mitigation of pest damage to crops.


Subject(s)
Lysine , Thysanoptera , Animals , Cyclophilins , Humans , Lysine/metabolism , Proteasome Endopeptidase Complex , Proteome/metabolism
3.
Front Microbiol ; 12: 745173, 2021.
Article in English | MEDLINE | ID: mdl-34745047

ABSTRACT

As one of the top 10 plant viruses, the severity of losses to crop productivity caused by the tomato spotted wilt virus (TSWV) has resulted in an urgent need to develop a more sensitive and rapid method of detection. In this study, we developed a CRISPR/Cas13a-based detection system to diagnose TSWV in tomato and western flower thrips (Frankliniella occidentalis). The detection system relies on recombinase polymerase amplification and Cas13a-mediated collateral cleavage activity. Positive results can be distinguished after 20 min by a significantly enhanced fluorescence signal. We tested the sensitivity of CRISPR/Cas13a-based detection system and found that the detection system that we developed has limits of detection that reaches 2.26 × 102 copies/µl and a 10-fold increase compared with the sensitivity of using RT-PCR to detect the virus. Furthermore, the CRISPR/Cas13a-based detection system has a high selectivity for the TSWV without interference from other viruses. The CRISPR/Cas13a-based detection system was utilized to detect the TSWV in samples of tomato leaves and the transmission vector F. occidentalis that were fully consistent with the results when RT-PCR was used to detect the virus.

SELECTION OF CITATIONS
SEARCH DETAIL
...