Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 167: 205-218, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37331615

ABSTRACT

Intrauterine adhesions (IUA) caused by endometrial injury are one of the main causes of female infertility. The current treatments for endometrial injury offer limited clinical benefits and cannot improve endometrial receptivity and pregnancy outcomes. Tissue engineering and regenerative medicine are considered potential solutions to address this concern and may offer effective treatment methods for the regeneration of injured human endometrium. Herein, we prepared an injectable hydrogel based on oxidized hyaluronic acid (HA-CHO) and hydrazide-grafted gelatin (Gel-ADH). The injectable hydrogel showed satisfactory biocompatibility when mixed with human umbilical cord mesenchymal stem cells (hUCMSCs). In an endometrial injury rat model, the treatment with hUCMSCs-loaded injectable hydrogel significantly enhanced the thickness of the endometrium and increased the abundance of blood vessels and glands in the injured endometrium compared to the control group. The hUCMSCs-loaded injectable hydrogel treatment significantly reduced endometrial fibrosis, decreased the expression of the pro-inflammatory factors (IL-1ß and IL-6) and increased the expression of the anti-inflammatory factor (IL-10). This treatment induced endometrial VEGF expression by activating the MEK/ERK1/2 signaling pathway. Moreover, this treatment improved endometrial receptivity to the embryo and restored the embryo implantation rate similar to the sham group (48% in the sham group vs 46% in the treatment group), and this treatment achieved pregnancy and live birth in rats with endometrial injury. In addition, we also preliminarily validated the safety of this treatment in the maternal rats and fetuses. Collectively, our study showed that the hUCMSCs-loaded injectable hydrogel hold potential as an effective treatment strategy promoting rapid recovery of endometrial injury, and this hydrogel is a promising biomaterial for regenerative medicine applications. STATEMENT OF SIGNIFICANCE: 1. Oxidized hyaluronic acid (HA-CHO)/hydrazide-grafted gelatin (Gel-ADH) hydrogel combined with human umbilical cord mesenchymal stem cells (hUCMSCs) are effective in improving the regeneration of endometrium in the endometrial injury rat model. 2. The hUCMSCs-loaded hydrogel treatment promotes the expression of endometrial VEGF through MEK/ERK1/2 signaling pathway and regulates the balance of inflammatory factors. 3. The embryo implantation and live birth rates restore to normal level in the endometrial injury rat model, and the hydrogel has no adverse effects on maternal rats, fetuses, and offspring development after the treatments.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Pregnancy , Humans , Rats , Female , Animals , Hydrogels/pharmacology , Hydrogels/metabolism , Gelatin/pharmacology , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Vascular Endothelial Growth Factor A/metabolism , Endometrium/metabolism , Mesenchymal Stem Cells/metabolism , Umbilical Cord , Fertility , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/pharmacology
2.
Genet Mol Biol ; 46(2): e20220297, 2023.
Article in English | MEDLINE | ID: mdl-37366642

ABSTRACT

Recurrent miscarriage (RM) seriously affects the physical and mental health of women of childbearing age, and 50% of the causes are unknown. Thus, it is valuable to investigate the causes of unexplained recurrent miscarriage (uRM). Similarities between tumor development and embryo implantation make us realize that tumor studies are informative for uRM. The non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1) is highly expressed in some tumors, and can promote tumor growth, invasion and migration. In this present paper, we firstly explore the role of NCK1 in uRM. We find that the NCK1 and PD-L1 are greatly reduced in peripheral blood mononuclear cells (PBMC) and decidua from patients with uRM. Next, we construct NCK1-knockdown HTR-8/SVneo cells, and find that NCK1-knockdown HTR-8/SVneo cells exhibit reduced proliferation and migration ability. Then we demonstrate that the expression of PD-L1 protein is decreased when the NCK1 is knocked down. In co-culture experiments with THP-1 and differently treated HTR-8/SVneo cells, we observe significantly increased proliferation of THP-1 in NCK1-knockdown group. In conclusion, NCK1 may be involved in RM by regulating trophoblast proliferation, migration, and regulating PD-L1-mediated macrophage proliferation at the maternal-fetal interface. Moreover, NCK1 has the potential to be a new predictor and therapeutic target.

3.
Biol Reprod ; 108(3): 504-518, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36504380

ABSTRACT

The cause for at least 50% of recurrent miscarriages is unclear, which is defined as unexplained recurrent miscarriages. The B7-H1 (PD-L1), a molecule of the B7 family, promotes tumor development by modulating immune evasion, and recent researchers have also attached importance to the role of B7-H3, another molecule of B7 family, in tumor. Based on the similarity between growth and immune response in tumors and pregnancy, we first explored the role of B7-H3 in unexplained recurrent miscarriages. We found reduced levels of B7-H3 in the villus tissue of unexplained recurrent miscarriage patients, and it was mainly expressed on the cell membrane of extravillous trophoblasts. Further, the HTR-8/SVneo and JEG-3 cells were selected to explore the role of B7-H3 in proliferation, apoptosis, tube formation, migration, and invasion. We found that B7-H3 regulated trophoblast migration and invasion via RhoA/ROCK2 signaling pathway. Inflammatory cytokines were detected through enzyme-linked immunosorbent assay after co-culturing with decidual natural killer cells and B7-H3-knockout JEG-3. Results showed that B7-H3 inhibited IL-8 and IP-10 secretion from the decidual natural killer cells. In a CBA/J × DBA/2 abortion-prone mice model, treatment with B7-H3-Fc protein successfully reduced the rate of embryo resorption. In conclusion, our results revealed a possible mechanism by which decreased B7-H3 on trophoblasts of unexplained recurrent miscarriages inhibited trophoblast migration and invasion and increased IL-8 and IP-10 secretion from the decidual natural killer cells. Furthermore, B7-H3 may be a promising new therapeutic target in unexplained recurrent miscarriage patients.


Subject(s)
Abortion, Habitual , Interleukin-8 , Animals , Female , Humans , Mice , Pregnancy , Abortion, Habitual/metabolism , Cell Line, Tumor , Chemokine CXCL10/metabolism , Decidua/metabolism , Interleukin-8/metabolism , Killer Cells, Natural/metabolism , Mice, Inbred CBA , Mice, Inbred DBA , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Signal Transduction , Trophoblasts/metabolism
4.
J Gynecol Obstet Hum Reprod ; 50(9): 102174, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34087449

ABSTRACT

Bacterial Vaginosis (BV) is the most common vaginal infection. A large amount of evidence shows that the anatomical scope of BV's pathogenic effect is far beyond the lower reproductive tract. BV is closely related to adverse reproductive outcomes, which may be due to the infection of the vaginal flora ascending to the upper genital tract. In addition, the incidence of BV is relatively high in infertile women. The vaginal microbiome also plays an important role in women's health and diseases. For most women, the normal vaginal microbiota is dominated by Lactobacillus, which can maintain a healthy vaginal environment by producing lactic acid, H2O2 and bacteriocin, etc. BV is characterized by the imbalanced vaginal flora. It changes the acidic environment that is normally dominated by Lactobacillus, and causes an overgrowth of anaerobic and facultative anaerobic bacteria such as Gardnerella vaginalis and Atopobium vaginae. Studies have shown that bacterial infections in the vagina can spread to upper genital tract and cause adverse fertility outcome. Therefore, early diagnosis and therapeutics of symptomatic BV is helpful to improve the outcome of poor fertility.


Subject(s)
Reproductive Health/standards , Vaginosis, Bacterial/complications , Adult , Female , Humans , Reproductive Health/statistics & numerical data , Treatment Outcome , Vagina/drug effects , Vagina/microbiology
5.
Technol Cancer Res Treat ; 20: 15330338211027898, 2021.
Article in English | MEDLINE | ID: mdl-34180301

ABSTRACT

Although Epirubicin (EPI) is a commonly used anthracycline for the treatment of breast cancer in clinic, the serious side effects limit its long-term administration including myelosuppression and cardiomyopathy. Nanomedicines have been widely utilized as drug delivery vehicles to achieve precise targeting of breast cancer cells. Herein, we prepared a DSPE-PEG nanocarrier conjugated a peptide, which targeted the breast cancer overexpression protein Na+/K+ ATPase α1 (NKA-α1). The nanocarrier encapsulated the EPI and grafted with the NKA-α1 targeting peptide through the click reaction between maleimide and thiol groups. The EPI was slowly released from the nanocarrier after entering the breast cancer cells with the guidance of the targeting NKA-α1 peptide. The precise and controllable delivery and release of the EPI into the breast cancer cells dramatically inhibited the cells proliferation and migration in vitro and suppressed the tumor volume in vivo. These results demonstrate significant prospects for this nanocarrier as a promising platform for numerous chemotherapy drugs.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Epirubicin/pharmacology , Nanoconjugates , Phosphatidylethanolamines , Polyethylene Glycols , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Epirubicin/administration & dosage , Epithelial Cells , Female , Humans , Liposomes , Mice
6.
Technol Cancer Res Treat ; 20: 15330338211010117, 2021.
Article in English | MEDLINE | ID: mdl-33929911

ABSTRACT

Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their in vivo pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging.


Subject(s)
Antineoplastic Agents/administration & dosage , Diagnostic Imaging/methods , Drug Delivery Systems , Fluorescent Dyes/chemistry , Neoplasms/diagnosis , Neoplasms/drug therapy , Single-Domain Antibodies/administration & dosage , Animals , Antineoplastic Agents/chemistry , Humans , Single-Domain Antibodies/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...