Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1132012, 2023.
Article in English | MEDLINE | ID: mdl-36817132

ABSTRACT

Increasing evidences suggest that miRNAs play a key role in the occurrence and progression of many complex human diseases. Therefore, targeting dysregulated miRNAs with small molecule drugs in the clinical has become a new treatment. Nevertheless, it is high cost and time-consuming for identifying miRNAs-targeted with drugs by biological experiments. Thus, more reliable computational method for identification associations of drugs with miRNAs urgently need to be developed. In this study, we proposed an efficient method, called GNMFDMA, to predict potential associations of drug with miRNA by combining graph Laplacian regularization with non-negative matrix factorization. We first calculated the overall similarity matrices of drugs and miRNAs according to the collected different biological information. Subsequently, the new drug-miRNA association adjacency matrix was reformulated based on the K nearest neighbor profiles so as to put right the false negative associations. Finally, graph Laplacian regularization collaborative non-negative matrix factorization was used to calculate the association scores of drugs with miRNAs. In the cross validation, GNMFDMA obtains AUC of 0.9193, which outperformed the existing methods. In addition, case studies on three common drugs (i.e., 5-Aza-CdR, 5-FU and Gemcitabine), 30, 31 and 34 of the top-50 associations inferred by GNMFDMA were verified. These results reveal that GNMFDMA is a reliable and efficient computational approach for identifying the potential drug-miRNA associations.

2.
J Transl Med ; 20(1): 552, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463215

ABSTRACT

BACKGROUND: Associations of drugs with diseases provide important information for expediting drug development. Due to the number of known drug-disease associations is still insufficient, and considering that inferring associations between them through traditional in vitro experiments is time-consuming and costly. Therefore, more accurate and reliable computational methods urgent need to be developed to predict potential associations of drugs with diseases. METHODS: In this study, we present the model called weighted graph regularized collaborative non-negative matrix factorization for drug-disease association prediction (WNMFDDA). More specifically, we first calculated the drug similarity and disease similarity based on the chemical structures of drugs and medical description information of diseases, respectively. Then, to extend the model to work for new drugs and diseases, weighted [Formula: see text] nearest neighbor was used as a preprocessing step to reconstruct the interaction score profiles of drugs with diseases. Finally, a graph regularized non-negative matrix factorization model was used to identify potential associations between drug and disease. RESULTS: During the cross-validation process, WNMFDDA achieved the AUC values of 0.939 and 0.952 on Fdataset and Cdataset under ten-fold cross validation, respectively, which outperforms other competing prediction methods. Moreover, case studies for several drugs and diseases were carried out to further verify the predictive performance of WNMFDDA. As a result, 13(Doxorubicin), 13(Amiodarone), 12(Obesity) and 12(Asthma) of the top 15 corresponding candidate diseases or drugs were confirmed by existing databases. CONCLUSIONS: The experimental results adequately demonstrated that WNMFDDA is a very effective method for drug-disease association prediction. We believe that WNMFDDA is helpful for relevant biomedical researchers in follow-up studies.


Subject(s)
Algorithms , Asthma , Humans , Cluster Analysis , Databases, Factual , Research Design
3.
Front Genet ; 13: 1032428, 2022.
Article in English | MEDLINE | ID: mdl-36457751

ABSTRACT

Accumulating evidence indicated that the interaction between lncRNA and miRNA is crucial for gene regulation, which can regulate gene transcription, further affecting the occurrence and development of many complex diseases. Accurate identification of interactions between lncRNAs and miRNAs is helpful for the diagnosis and therapeutics of complex diseases. However, the number of known interactions of lncRNA with miRNA is still very limited, and identifying their interactions through biological experiments is time-consuming and expensive. There is an urgent need to develop more accurate and efficient computational methods to infer lncRNA-miRNA interactions. In this work, we developed a matrix completion approach based on structural perturbation to infer lncRNA-miRNA interactions (SPCMLMI). Specifically, we first calculated the similarities of lncRNA and miRNA, including the lncRNA expression profile similarity, miRNA expression profile similarity, lncRNA sequence similarity, and miRNA sequence similarity. Second, a bilayer network was constructed by integrating the known interaction network, lncRNA similarity network, and miRNA similarity network. Finally, a structural perturbation-based matrix completion method was used to predict potential interactions of lncRNA with miRNA. To evaluate the prediction performance of SPCMLMI, five-fold cross validation and a series of comparison experiments were implemented. SPCMLMI achieved AUCs of 0.8984 and 0.9891 on two different datasets, which is superior to other compared methods. Case studies for lncRNA XIST and miRNA hsa-mir-195-5-p further confirmed the effectiveness of our method in inferring lncRNA-miRNA interactions. Furthermore, we found that the structural consistency of the bilayer network was higher than that of other related networks. The results suggest that SPCMLMI can be used as a useful tool to predict interactions between lncRNAs and miRNAs.

4.
Mol Biosyst ; 10(12): 3138-46, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25227320

ABSTRACT

Extracellular electron transfer (EET) is the key feature of some bacteria, such as Geobacter sulfurreducens and Shewanella oneidensis. Via EET processes, these bacteria can grow on electrode surfaces and make current output of microbial fuel cells. c-Type cytochromes can be used as carriers to transfer electrons, which play an important role in EET processes. Typically, from the inner (cytoplasmic) membrane through the periplasm to the outer membrane, they could form EET pathways. Recent studies suggest that a group of c-type cytochromes could form a network which extended the well-known EET pathways. We obtained the protein interaction information for all 41 c-type cytochromes in Shewanella oneidensis MR-1, constructed a large-scale protein interaction network, and studied its structural characteristics and functional significance. Centrality analysis has identified the top 10 key proteins of the network, and 7 of them are associated with electricity production in the bacteria, which suggests that the ability of Shewanella oneidensis MR-1 to produce electricity might be derived from the unique structure of the c-type cytochrome network. By modularity analysis, we obtained 5 modules from the network. The subcellular localization study has shown that the proteins in these modules all have diversiform cellular compartments, which reflects their potential to form EET pathways. In particular, combination of protein subcellular localization and operon analysis, the well-known and new candidate EET pathways are obtained from the Mtr-like module, indicating that potential EET pathways could be obtained from such a c-type cytochrome network.


Subject(s)
Bacterial Proteins/chemistry , Cytochrome c Group/chemistry , Geobacter/chemistry , Shewanella/chemistry , Electron Transport , Electrophysiological Phenomena , Protein Interaction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...