Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 33(9): 1794-1798, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-35925765

ABSTRACT

A portable reagent inlet system for a linear quadrupole ion trap (LQIT) mass spectrometer was designed to diminish the impact of air and water on gas-phase ion-molecule reactions. Compared to the traditional reagent mixing manifolds that has been extensively used for decades, the portable system is much simpler and has fewer junctions and a smaller inner space. These changes reduce the amount of air and water introduced into the mass spectrometer with the reagent. Furthermore, unlike the traditional manifolds, the portable system can be easily attached to or detached from the LQIT mass spectrometer. Finally, the price of the portable system is only 1/10 of that of a traditional manifold as estimated in 2022. Therefore, the portable system has several advantages over the traditional reagent mixing manifolds.

2.
Chemistry ; 28(1): e202102968, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34786768

ABSTRACT

Examination of the reactions of σ-type quinolinium-based triradicals with cyclohexane in the gas phase demonstrated that the radical site that is the least strongly coupled to the other two radical sites reacts first, independent of the intrinsic reactivity of this radical site, in contrast to related biradicals that first react at the most electron-deficient radical site. Abstraction of one or two H atoms and formation of an ion that formally corresponds to a combination of the ion and cyclohexane accompanied by elimination of a H atom ("addition-H") were observed. In all cases except one, the most reactive radical site of the triradicals is intrinsically less reactive than the other two radical sites. The product complex of the first H atom abstraction either dissociates to give the H-atom-abstraction product and the cyclohexyl radical or the more reactive radical site in the produced biradical abstracts a H atom from the cyclohexyl radical. The monoradical product sometimes adds to cyclohexene followed by elimination of a H atom, generating the "addition-H" products. Similar reaction efficiencies were measured for three of the triradicals as for relevant monoradicals. Surprisingly, the remaining three triradicals (all containing a meta-pyridyne moiety) reacted substantially faster than the relevant monoradicals. This is likely due to the exothermic generation of a meta-pyridyne analog that has enough energy to attain the dehydrocarbon atom separation common for H-atom-abstraction transition states of protonated meta-pyridynes.

3.
Bioconjug Chem ; 32(5): 1001-1007, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33914520

ABSTRACT

DNA encoded library (DEL) technology allows for rapid identification of novel small-molecule ligands and thus enables early-stage drug discovery. DEL technology is well-established, numerous cases of discovered hit molecules have been published, and the technology is widely employed throughout the pharmaceutical industry. Nonetheless, DEL selection results can be difficult to interpret, as library member enrichment may derive from not only desired products, but also DNA-conjugated byproducts and starting materials. Note that DELs are generally produced using split-and-pool combinatorial chemistry, and DNA-conjugated byproducts and starting materials cannot be removed from the library mixture. Herein, we describe a method for high-throughput parallel resynthesis of DNA-conjugated molecules such that byproducts, starting materials, and desired products are produced in a single pot, using the same chemical reactions and reagents as during library production. The low-complexity mixtures of DNA-conjugate are then assessed for protein binding by affinity selection mass spectrometry and the molecular weights of the binding ligands ascertained. This workflow is demonstrated to be a practical tool to triage and validate potential hits from DEL selection data.


Subject(s)
DNA/chemistry , Gene Library , Mass Spectrometry , Combinatorial Chemistry Techniques
4.
Bioconjug Chem ; 31(9): 2092-2097, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32804494

ABSTRACT

We report a DNA-compatible protocol for synthesizing amides from DNA-bound aldehydes and non-nucleophilic arylamines including aza-substituted anilines, 2-aminobenzimidazoles, and 3-aminopyrazoles. The reactions were carried out at room temperature and provided reasonable conversions and wide functional group compatibility. The reactions were also successful when employing aryl and aliphatic aldehydes. In addition, qPCR and NGS data suggested no negative impact on DNA integrity after the copper-mediated oxidative amidation reaction.


Subject(s)
Aldehydes/chemistry , Amides/chemistry , Amines/chemistry , Copper/chemistry , DNA/chemistry , Aldehydes/chemical synthesis , Amides/chemical synthesis , Aniline Compounds/chemistry , Catalysis , Oxidation-Reduction
5.
J Org Chem ; 85(13): 8415-8428, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32482062

ABSTRACT

Coupling of the radical sites in isomeric benzynes is known to hinder their radical reactivity. In order to determine how far apart the radical sites must be for them not to interact, the gas-phase reactivity of several isomeric protonated (iso)quinoline- and acridine-based biradicals was examined. All the (iso)quinolinium-based biradicals were found to react slower than the related monoradicals with similar vertical electron affinities (i.e., similar polar effects). In sharp contrast, the acridinium-based biradicals, most with the radical sites farther apart than in the (iso)quinolinium-based systems, showed greater reactivities than the relevant monoradicals with similar vertical electron affinities. The greater distances between the two radical sites in these biradicals lead to very little or no spin-spin coupling, and no suppression of radical reactivity was observed. Therefore, the radical sites can still interact if they are located on adjacent benzene rings and only after being separated further than that does no coupling occur. The most reactive radical site of each biradical was experimentally determined to be the one predicted to be more reactive based on the monoradical reactivity data. Therefore, the calculated vertical electron affinities of relevant monoradicals can be used to predict which radical site is most reactive in the biradicals.

6.
J Org Chem ; 84(11): 7037-7050, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31064180

ABSTRACT

Evaluation of the feasibility of various mechanisms possibly involved in cellulose fast pyrolysis is challenging. Therefore, selectively 13C-labeled cellotriose, 18O-labeled cellobiose, and 13C- and 18O-doubly-labeled cellobiose were synthesized and subjected to fast pyrolysis in an atmospheric pressure chemical ionization source of a linear quadrupole ion trap/orbitrap mass spectrometer. The initial products were immediately quenched, ionized using ammonium cations, and subsequently analyzed using the mass spectrometer. The loss or retention of isotope labels upon pyrolysis unambiguously revealed three major competing mechanisms-sequential losses of glycolaldehyde/ethenediol molecules from the reducing end (the reducing-end unraveling mechanism), hydroxymethylene-assisted glycosidic bond cleavage (HAGBC mechanism), and Maccoll elimination. Important discoveries include the following: (1) Reducing-end unraveling is the predominant mechanism occurring at the reducing end; (2) Maccoll elimination facilitates the cleaving of aglyconic bonds, and it is the mechanism leading to formation of reducing carbohydrates; 3) HAGBC occurs for glycosides but not at the reducing end of cellodextrins; 4) HAGBC and water loss are the predominant reactions for fast pyrolysis of 1,6-anhydrocellodextrins; and 5) HAGBC can proceed after reducing-end unraveling but unraveling does not occur once the HAGBC reaction pathway is initiated. Moreover, hydrolysis was conclusively ruled out for fast pyrolysis of cellobiose, cellotriose, and 1,6-anhydrocellodextrins up to cellotetraosan. No radical reactions were observed.

7.
J Am Chem Soc ; 141(16): 6672-6679, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30945540

ABSTRACT

The gas-phase reactivities of several protonated quinoline-based σ-type (carbon-centered) mono-, bi-, and triradicals toward dimethyl disulfide (DMDS) were studied by using a linear quadrupole ion trap mass spectrometer. The mono- and biradicals produce abundant thiomethyl abstraction products and small amounts of DMDS radical cation, as expected. Surprisingly, all triradicals produce very abundant DMDS radical cations. A single-step mechanism involving electron transfer from DMDS to the triradicals is highly unlikely because the (experimental) adiabatic ionization energy of DMDS is almost 3 eV greater than the (calculated) adiabatic electron affinities of the triradicals. The unexpected reactivity can be explained based on an unprecedented two-step mechanism wherein the protonated triradical first transfers a proton to DMDS, which is then followed by hydrogen atom abstraction from the protonated sulfur atom in DMDS by the radical site in the benzene ring of the deprotonated triradical to generate the conventional DMDS radical cation and a neutral biradical. Quantum chemical calculations as well as examination of deuterated and methylated triradicals provide support for this mechanism. The proton affinities of the neutral triradicals (and DMDS) influence the first step of the reaction while the vertical electron affinities and spin-spin coupling of the neutral triradicals influence the second step. The calculated total reaction exothermicities for the triradicals studied range from 27.6 up to 29.9 kcal mol-1.

8.
Chemistry ; 25(17): 4472-4477, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30648302

ABSTRACT

The reactivity of a carbon-centered σ,σ,σ,σ-type singlet-ground-state tetraradical containing two meta-benzyne moieties was examined in the gas phase. Surprisingly, the tetraradical showed higher reactivity than its individual meta-benzyne counterparts. The reactivity of meta-benzynes is controlled by their (calculated) distortion energy ΔE2.3 , singlet-triplet spitting ΔES-T , and electron affinity (EA2.3 ) of the meta-benzyne moiety at the transition state geometry for hydrogen-atom abstraction reactions. The addition of a second meta-benzyne moiety to a meta-benzyne does not significantly change EA2.3 . However, ΔE2.3 is substantially decreased for both meta-benzyne moieties in the tetraradical, and this explains their higher reactivities. The decrease in ΔE2.3 for each meta-benzyne moiety in the tetraradical is rationalized by stabilizing spin-spin coupling between one radical site in each meta-benzyne moiety. Therefore, spin-spin coupling between the meta-benzyne moieties in this tetraradical increases its reactivity, whereas spin-spin coupling within each meta-benzyne moiety decreases its reactivity.

9.
Chem Commun (Camb) ; 51(16): 3446-9, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25627988

ABSTRACT

A series of triscyclometalated iridium complexes with oligofluorene-substituted ppy ligands manifest impressive two- and three-photon absorption properties. In particular, a star-shaped complex bearing three carbazole-terminated trifluorenyl ppy demonstrates a large three-photon absorption cross section up to 81 × 10(-78) cm(6) s(2) photon(-2). In combination with optimal phosphorescence quantum yields (0.5-0.8), such iridium complexes are effective two- and three-photon excited phosphorescence emitters.

SELECTION OF CITATIONS
SEARCH DETAIL
...