Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 15(11): e1007451, 2019 11.
Article in English | MEDLINE | ID: mdl-31710622

ABSTRACT

Cancer is driven by genetic mutations that dysregulate pathways important for proper cell function. Therefore, discovering these cancer pathways and their dysregulation order is key to understanding and treating cancer. However, the heterogeneity of mutations between different individuals makes this challenging and requires that cancer progression is studied in a subtype-specific way. To address this challenge, we provide a mathematical model, called Subtype-specific Pathway Linear Progression Model (SPM), that simultaneously captures cancer subtypes and pathways and order of dysregulation of the pathways within each subtype. Experiments with synthetic data indicate the robustness of SPM to problem specifics including noise compared to an existing method. Moreover, experimental results on glioblastoma multiforme and colorectal adenocarcinoma show the consistency of SPM's results with the existing knowledge and its superiority to an existing method in certain cases. The implementation of our method is available at https://github.com/Dalton386/SPM.


Subject(s)
Computational Biology/methods , Metabolic Networks and Pathways/genetics , Neoplasms/genetics , Algorithms , Colorectal Neoplasms/genetics , Disease Progression , Glioblastoma/genetics , Humans , Linear Models , Models, Theoretical , Mutation , Neoplasms/metabolism , Signal Transduction/genetics
2.
Bioinformatics ; 35(14): i379-i388, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31510674

ABSTRACT

MOTIVATION: Despite the remarkable advances in sequencing and computational techniques, noise in the data and complexity of the underlying biological mechanisms render deconvolution of the phylogenetic relationships between cancer mutations difficult. Besides that, the majority of the existing datasets consist of bulk sequencing data of single tumor sample of an individual. Accurate inference of the phylogenetic order of mutations is particularly challenging in these cases and the existing methods are faced with several theoretical limitations. To overcome these limitations, new methods are required for integrating and harnessing the full potential of the existing data. RESULTS: We introduce a method called Hintra for intra-tumor heterogeneity detection. Hintra integrates sequencing data for a cohort of tumors and infers tumor phylogeny for each individual based on the evolutionary information shared between different tumors. Through an iterative process, Hintra learns the repeating evolutionary patterns and uses this information for resolving the phylogenetic ambiguities of individual tumors. The results of synthetic experiments show an improved performance compared to two state-of-the-art methods. The experimental results with a recent Breast Cancer dataset are consistent with the existing knowledge and provide potentially interesting findings. AVAILABILITY AND IMPLEMENTATION: The source code for Hintra is available at https://github.com/sahandk/HINTRA.


Subject(s)
Neoplasms , Software , Humans , Mutation , Phylogeny , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...