Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997111

ABSTRACT

With electronic devices evolving toward portable and high-performance wearables, the constraints of complex and wet processing technologies become apparent. This study presents a scalable photolithography/chemical-free method for crafting wearable all-carbon nanotube (CNT) photodetector device arrays. Laser-assisted patterning and dry deposition techniques directly assemble gas-phase CNTs into flexible devices without any lithography or lift-off processes. The resulting wafer-scale all-CNT photodetector arrays showcase excellent uniformity, wearability, environmental stability, and notable broadband photoresponse, boasting a high responsivity of 44 AW-1 and a simultaneous detectivity of 1.9 × 109 Jones. This research provides an efficient, versatile, and scalable strategy for manufacturing wearable all-CNT device arrays, allowing widespread adoption in wearable optoelectronics and multifunctional sensors.

2.
ACS Appl Mater Interfaces ; 15(3): 4216-4225, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36635093

ABSTRACT

Fabricating electronic and optoelectronic devices by transferring pre-deposited metal electrodes has attracted considerable attention, owing to the improved device performance. However, the pre-deposited metal electrode typically involves complex fabrication procedures. Here, we introduce our facile electrode fabrication process which is free of lithography, lift-off, and reactive ion etching by directly press-transferring a single-walled carbon nanotube (SWCNT) film. We fabricated Schottky diodes for photodetector applications using dry-transferred SWCNT films as the transparent electrode to increase light absorption in photoactive MoS2 channels. The MoS2 flake vertically stacked with an SWCNT electrode can exhibit excellent photodetection performance with a responsivity of ∼2.01 × 103 A/W and a detectivity of ∼3.2 × 1012 Jones. Additionally, we carried out temperature-dependent current-voltage measurement and Fowler-Nordheim (FN) plot analysis to explore the dominant charge transport mechanism. The enhanced photodetection in the vertical configuration is found to be attributed to the FN tunneling and internal photoemission of charge carriers excited from indium tin oxide across the MoS2 layer. Our study provides a novel concept of using a photoactive MoS2 layer as a tunneling layer itself with a dry-transferred transparent SWCNT electrode for high-performance and energy-efficient optoelectronic devices.

3.
Nanoscale ; 14(42): 15679-15690, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36263752

ABSTRACT

Vertically stacked metal-semiconductor-metal heterostructures, based on liquid-processed nanomaterials, hold great potential for various printed electronic applications. Here we describe the fabrication of such devices by spray-coating semiconducting tungsten disulfide (WS2) nanosheets onto indium tin oxide (ITO) bottom electrodes, followed by spraying single-walled carbon nanotubes (SWNTs) as the top electrode. Depending on the formulation of the SWNTs ink, we could fabricate either Ohmic or Schottky contacts at the WS2/SWNTs interface. Using isopropanol-dispersed SWNTs led to Ohmic contacts and bulk-limited devices, characterized by out-of-plane conductivities of ∼10-4 S m-1. However, when aqueous SWNTs inks were used, rectification was observed, due to the formation of a doping-induced Schottky barrier at the WS2/SWNTs interface. For thin WS2 layers, such devices were characterized by a barrier height of ∼0.56 eV. However, increasing the WS2 film thickness led to increased series resistance, leading to a change-over from electrode-limited to bulk-limited behavior at a transition thickness of ∼2.6 µm. This work demonstrates that Ohmic/Schottky behavior is tunable and lays the foundation for fabricating large-area 2D nanosheet-based solution-deposited devices and stacks.

4.
Adv Mater ; 33(8): e2006395, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33314478

ABSTRACT

Although single-wall carbon nanotubes (SWCNTs) exhibit various colors in suspension, directly synthesized SWCNT films usually appear black. Recently, a unique one-step method for directly fabricating green and brown films has been developed. Such remarkable progress, however, has brought up several new questions. The coloration mechanism, potentially achievable colors, and color controllability of SWCNTs are unknown. Here, a quantitative model is reported that can predict the specific colors of SWCNT films and unambiguously identify the coloration mechanism. Using this model, colors of 466 different SWCNT species are calculated, which reveals a broad spectrum of potentially achievable colors of SWCNTs. The calculated colors are in excellent agreement with existing experimental data. Furthermore, the theory predicts the existence of many brilliantly colored SWCNT films, which are experimentally expected. This study shows that SWCNTs as a form of pure carbon, can display a full spectrum of vivid colors, which is expected to complement the general understanding of carbon materials.

5.
Nanoscale ; 12(23): 12263-12267, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32495811

ABSTRACT

Here, a scalable floating catalyst chemical vapor deposition (FCCVD) method is developed for the production of single-walled carbon nanotubes (SWCNTs) with a controlled structure. For the first time, water is used as the growth promoter in the FCCVD process to modulate the growth of SWCNTs. At an optimum water concentration of ca. 115 ppm, the water-assisted FCCVD process synthesizes SWCNTs with a significantly narrow chirality distribution. In particular, the proportion of (9,8) and (8,7) semiconducting tubes was dramatically enhanced to 45% with 27% of the (9,8) tube in the end product. This is attributed to the changes in both the SWCNT diameter and the chiral angle. The experiment results and accurate quantum chemical molecular dynamics simulations show that the addition of water affects the nucleation and the size distribution of nanoparticle catalysts, thus resulting in the growth of SWCNTs with a highly uniform structure. This direct and continuous water-assisted FCCVD provides the possibility for the mass production of high-quality SWCNTs with a controlled structure.

6.
J Phys Chem C Nanomater Interfaces ; 123(20): 13136-13140, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31156738

ABSTRACT

The chemical and electrical properties of single-walled carbon nanotubes (SWCNTs) and graphene can be modified by the presence of covalently bound impurities. Although this can be achieved by introducing chemical additives during synthesis, it often hinders growth and leads to limited crystallite size and quality. Here, through the simultaneous formation of vacancies with low-energy argon plasma and the thermal activation of adatom diffusion by laser irradiation, silicon impurities are incorporated into the lattice of both materials. After an exposure of ∼1 ion/nm2, we find Si-substitution densities of 0.15 nm-2 in graphene and 0.05 nm-2 in nanotubes, as revealed by atomically resolved scanning transmission electron microscopy. In good agreement with predictions of Ar irradiation effects in SWCNTs, we find Si incorporated in both mono- and divacancies, with ∼2/3 being of the first type. Controlled inclusion of impurities in the quasi-1D and -2D carbon lattices may prove useful for applications such as gas sensing, and a similar approach might also be used to substitute other elements with migration barriers lower than that of carbon.

7.
R Soc Open Sci ; 5(6): 180392, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30110424

ABSTRACT

We report floating catalyst chemical vapour deposition synthesis of single-walled carbon nanotubes (SWCNTs) for high-performance transparent conducting films (TCFs) using low feeding rate of precursor solution. Herein, ethanol acts as carbon source, ferrocene and thiophene as catalyst precursor and growth promoter, respectively. By adopting a low feeding rate of 4 µl min-1, the fabricated TCFs present one of the lowest sheet resistances of ca 78 Ω sq.-1. at 90% transmittance. Optical characterizations demonstrate that the mean diameter of high-quality SWCNTs is up to 2 nm. Additionally, electron microcopy observations provide evidence that the mean length of SWCNT bundles is as long as 28.4 µm while the mean bundle diameter is only 5.3 nm. Moreover, very few CNT loops can be found in the film. Remarkably, the fraction of individual SWCNTs reaches 24.6%. All those morphology data account for the superior optoelectronic performance of our SWCNT TCFs.

8.
Nanoscale ; 10(20): 9752-9759, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29767193

ABSTRACT

We have developed the floating catalyst chemical vapor deposition (FCCVD) synthesis of single walled carbon nanotubes (SWCNTs) using C2H4 hydrocarbon as a carbon source and iron nanoparticles as the catalyst in an environmentally friendly and economical process. For the first time, ethylene was used as the only carbon source in FCCVD with N2 as the main carrier gas. No sulphur and less than 15% H2 in a N2 carrier gas were used. By varying the ferrocene concentration, the diameter of the SWCNTs was tuned in the range of 1.3-1.5 nm with the optimized control of ferrocene concentration. The process produced SWCNTs with an average length of 13 µm and with a low level of bundling, that is a high proportion (28%) of individual tubes. The electron diffraction (ED) pattern indicated a random chirality distribution of the tubes between armchair and zigzag structures. The ED analysis also revealed that 35-38% of tubes are metallic. As a result of having long SWCNTs with a low level of bundling and a high fraction of metallic tubes, we produced a highly conductive transparent film with a sheet resistance of 51 Ohm per sq. for 90% transmission at 550 nm after HNO3 treatment, this being one of the lowest sheet resistance values reported for SWCNT thin films.

9.
ACS Omega ; 3(1): 1322-1328, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-31457968

ABSTRACT

We report the direct and dry deposition of transparent conducting films (TCFs) of aerosol-synthesized single-walled carbon nanotubes (SWNTs) using a thermophoretic precipitator (TP) designed for the uniform and efficient deposition of aerosol-synthesized nanomaterials on 50 mm wafers or similarly sized polymer substrates. The optical and electrical performance of the fabricated TCFs match or surpass the published results achieved using a filter-based collection of aerosol-synthesized SWNTs, and TCFs with sheet resistances of 60 Ω/sq. at 87.8% transmittance and 199 Ω/sq. at 96% transmittance on flexible polymer substrates are demonstrated. The precipitator design is immediately applicable in roll-to-roll fabrication of SWNT TCFs or other functional coatings of aerosol-synthesized nanomaterials.

10.
Nanoscale ; 9(44): 17601-17609, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29114684

ABSTRACT

Single-walled carbon nanotube (SWCNT) films have great potential to replace indium tin oxide films for applications in transparent and conductive electronics. Here we report a high yield production of SWCNT transparent conducting films (TCFs) by the floating catalyst chemical vapor deposition method using ethanol as the carbon source. To the best of our knowledge, this is the first report regarding SWCNT TCFs using ethanol as the carbon source. The fabricated uniform SWCNT TCFs exhibit a competitive sheet resistance of 95 Ω sq-1 at 90% transmittance after doping with AuCl3. The SWCNT TCFs possess high quality and the mean length of SWCNT bundles is approximately 27.4 µm. Furthermore, the concentration of semiconducting SWCNTs is 75-77%. Additionally, the chirality maps obtained from electron diffraction analysis demonstrate that our SWCNTs are biased towards the armchair type.

11.
Nanotechnology ; 27(8): 085602, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26808687

ABSTRACT

Novel hierarchical chrysanthemum-flower-like carbon nanomaterials (CFL-CNMs) were synthesized by thermal chemical vapor deposition based on acetylene decomposition. A scanning electron microscope and a transmission electron microscope were employed to observe the morphology and structure of the unconventional nanostructures. It is found that the CFL-CNMs look like a blooming chrysanthemum with a stem rather than a spherical flower. The carbon flower has an average diameter of 5 µm, an average stem diameter of 150 nm, branch diameters ranging from 20 to 70 nm, and branch lengths ranging from 0.5 to 3 µm. The morphologies of the CFL-CNMs are unlike any of those previously reported. Fishbone-like carbon nanofibers with a spindle-shaped catalyst locating at the tip can also be found. Furthermore, the catalyst split was proposed to elucidate the formation mechanism of CFL-CNMs. A large and glomerate catalyst particle at the tip of the carbon nanofiber splits into smaller catalyst particles which are catalytic-active points for branch formation, resulting in the formation of CFL-CNMs.

12.
Nanotechnology ; 27(5): 055601, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26671344

ABSTRACT

Graphene oxide nanosheets (GONSs) with a lateral size less than 100 nm have attracted more and more attention for their wide range of potential applications, from bionanotechnology and nanobiomedicine to surfactants. However, at present GONSs are commonly prepared from graphite nanofibers or graphite nanopowders which are both expensive. Here, a timesaving, low-cost, high-yield method is proposed for preparing ultrasmall uniform GONSs with an average lateral size of ∼30 nm, utilizing common graphite powder as the raw material in the absence of a strong acid. The obtained GONSs are able to disperse single-walled carbon nanotubes (SWCNTs) effectively, and the dispersion could withstand high-speed centrifugation. Consequently, GONSs could indeed serve as a superior surfactant for the dispersion of SWCNTs, and the dispersion could be further applied in electronics, as the GONSs may be further reduced to reduced GONSs or graphene nanosheets.

13.
Sci Rep ; 5: 11281, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26063127

ABSTRACT

Y-junction carbon nanocoils (Y-CNCs) were synthesized by thermal chemical vapor deposition using Ni catalyst prepared by spray-coating method. According to the emerging morphologies of Y-CNCs, several growth models were advanced to elucidate their formation mechanisms. Regarding the Y-CNCs without metal catalyst in the Y-junctions, fusing of contiguous CNCs and a tip-growth mechanism are considered to be responsible for their formation. However, as for the Y-CNCs with catalyst presence in the Y-junctions, the formation can be ascribed to nanoscale soldering/welding and bottom-growth mechanism. It is found that increasing spray-coating time for catalyst preparation generates agglomerated larger nanoparticles strongly adhering to the substrate, resulting in bottom-growth of CNCs and appearance of the metal catalyst in the Y-junctions. In the contrary case, CNCs catalyzed by isolated smaller nanoparticles develop Y-junctions with an absence of metal catalyst by virtue of weaker adhesion of catalyst with the substrate and tip-growth of CNCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...