Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.205
Filter
1.
BMC Chem ; 18(1): 95, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702788

ABSTRACT

Cholesteryl ester transfer protein (CETP) is a promising therapeutic target for cardiovascular diseases. It effectively lowers the low-density lipoprotein cholesterol levels and increases the high-density lipoprotein cholesterol levels in the human plasma. This study identified novel and highly potent CETP inhibitors using virtual screening techniques. Molecular docking and molecular dynamics (MD) simulations revealed the binding patterns of these inhibitors, with the top 50 compounds selected according to their predicted binding affinity. Protein-ligand interaction analyses were performed, leading to the selection of 26 compounds for further evaluation. A CETP inhibition assay confirmed the inhibitory activities of the selected compounds. The results of the MD simulations revealed the structural stability of the protein-ligand complexes, with the binding site remaining significantly unchanged, indicating that the five compounds (AK-968/40709303, AG-690/11820117, AO-081/41378586, AK-968/12713193, and AN-465/14952302) identified have the potential as active CETP inhibitors and are promising leads for drug development.

2.
Cyborg Bionic Syst ; 5: 0112, 2024.
Article in English | MEDLINE | ID: mdl-38725972

ABSTRACT

In this article, we study the trajectory planning and tracking control of a bionic underwater robot under multiple dynamic obstacles. We first introduce the design of the bionic leopard cabinet underwater robot developed in our lab. Then, we model the trajectory planning problem of the bionic underwater robot by combining its dynamics and physical constraints. Furthermore, we conduct global trajectory planning for bionic underwater robots based on the temporal-spatial Bezier curves. In addition, based on the improved proximal policy optimization, local dynamic obstacle avoidance trajectory replanning is carried out. In addition, we design the fuzzy proportional-integral-derivative controller for tracking control of the planned trajectory. Finally, the effectiveness of the real-time trajectory planning and tracking control method is verified by comparative simulation in dynamic environment and semiphysical simulation of UWSim. Among them, the real-time trajectory planning method has advantages in trajectory length, trajectory smoothness, and planning time. The error of trajectory tracking control method is controlled around 0.2 m.

3.
Article in English | MEDLINE | ID: mdl-38785131

ABSTRACT

OBJECTIVE: This study aims to investigate the mechanism of Huangqin Tang in treating liver cancer. METHODS: Active ingredients and corresponding targets of Huangqin Tang were obtained from the Traditional Chinese Medicine Systems Pharmacology Database. Differentially expressed genes in liver cancer were identified from mRNA expression data. A protein-protein interaction (PPI) network was constructed using differentially expressed genes and Huangqin Tang targets. Random walk with restart (RWR) analysis was performed on the PPI network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted. A drug-active ingredient-gene interaction network was established, and molecular docking and molecular dynamics simulations were performed. Finally, the stability of binding between CDK1 and oroxylin was tested according to cellular thermal shift assay (CETSA). RESULTS: 160 active ingredients, 239 targets, and 1093 differentially expressed genes were identified. RWR analysis identified 10 potential targets for liver cancer. Enrichment analysis revealed protein kinase regulator activity and Steroid hormone biosynthesis as significant pathways. Molecular docking suggested a stable complex between oroxylin A and CDK1. CETSA demonstrated that the combination of oroxylin A and CDK1 increased the stability of CDK1, and the combination efficiency was high. CONCLUSION: Huangqin Tang may treat liver cancer by targeting CDK1 with oroxylin A. Protein kinase regulator activity and Steroid hormone biosynthesis pathways may play a role in liver cancer treatment with Huangqin Tang. This study provides insight into the mechanistic basis of Huangqin Tang for liver cancer treatment.

4.
Langmuir ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780496

ABSTRACT

Lithium-sulfur (Li-S) batteries with high specific energy density, low cost, and environmental friendliness of sulfur have been regarded as a competitive alternative to replace lithium-ion batteries. However, the shuttle effect and the sluggish conversion rate of lithium polysulfides (LiPSs) have seriously limited the practical application of Li-S batteries. Herein, high-entropy oxides grown on the carbon cloth (CC/HEO) are synthesized by a simple and ultrafast solution combustion method for the sulfur cathode. The as-prepared composites possess abundant HEO active sites for strong interaction with LiPSs, which can significantly promote redox kinetics. Besides, the carbon fiber substrate not only ensures high electrical conductivity but also accommodates large volume change, leading to a stable sulfur electrochemistry. Benefiting from the rational design, the Li-S batteries with CC/HEO as cathode skeleton exhibits good cyclability with a capacity decay rate of 0.057% per cycle after 1000 cycles at 2 C. More importantly, the Li-S batteries with 4.3 mg cm-2 high sulfur loading can still retain a high capacity retention of 78.2% after 100 cycles.

5.
Nature ; 629(8010): 74-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38693415

ABSTRACT

Within the family of two-dimensional dielectrics, rhombohedral boron nitride (rBN) is considerably promising owing to having not only the superior properties of hexagonal boron nitride1-4-including low permittivity and dissipation, strong electrical insulation, good chemical stability, high thermal conductivity and atomic flatness without dangling bonds-but also useful optical nonlinearity and interfacial ferroelectricity originating from the broken in-plane and out-of-plane centrosymmetry5-23. However, the preparation of large-sized single-crystal rBN layers remains a challenge24-26, owing to the requisite unprecedented growth controls to coordinate the lattice orientation of each layer and the sliding vector of every interface. Here we report a facile methodology using bevel-edge epitaxy to prepare centimetre-sized single-crystal rBN layers with exact interlayer ABC stacking on a vicinal nickel surface. We realized successful accurate fabrication over a single-crystal nickel substrate with bunched step edges of the terrace facet (100) at the bevel facet (110), which simultaneously guided the consistent boron-nitrogen bond orientation in each BN layer and the rhombohedral stacking of BN layers via nucleation near each bevel facet. The pure rhombohedral phase of the as-grown BN layers was verified, and consequently showed robust, homogeneous and switchable ferroelectricity with a high Curie temperature. Our work provides an effective route for accurate stacking-controlled growth of single-crystal two-dimensional layers and presents a foundation for applicable multifunctional devices based on stacked two-dimensional materials.

6.
Nat Commun ; 15(1): 4130, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755189

ABSTRACT

Compared to transition metal dichalcogenide (TMD) monolayers, rhombohedral-stacked (R-stacked) TMD bilayers exhibit remarkable electrical performance, enhanced nonlinear optical response, giant piezo-photovoltaic effect and intrinsic interfacial ferroelectricity. However, from a thermodynamics perspective, the formation energies of R-stacked and hexagonal-stacked (H-stacked) TMD bilayers are nearly identical, leading to mixed stacking of both H- and R-stacked bilayers in epitaxial films. Here, we report the remote epitaxy of centimetre-scale single-crystal R-stacked WS2 bilayer films on sapphire substrates. The bilayer growth is realized by a high flux feeding of the tungsten source at high temperature on substrates. The R-stacked configuration is achieved by the symmetry breaking in a-plane sapphire, where the influence of atomic steps passes through the lower TMD layer and controls the R-stacking of the upper layer. The as-grown R-stacked bilayers show up-to-30-fold enhancements in carrier mobility (34 cm2V-1s-1), nearly doubled circular helicity (61%) and interfacial ferroelectricity, in contrast to monolayer films. Our work reveals a growth mechanism to obtain stacking-controlled bilayer TMD single crystals, and promotes large-scale applications of R-stacked TMD.

7.
Nat Commun ; 15(1): 4076, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744824

ABSTRACT

Carbon nanotubes (CNTs), hollow cylinders of carbon, hold great promise for advanced technologies, provided their structure remains uniform throughout their length. Their growth takes place at high temperatures across a tube-catalyst interface. Structural defects formed during growth alter CNT properties. These defects are believed to form and heal at the tube-catalyst interface but an understanding of these mechanisms at the atomic-level is lacking. Here we present DeepCNT-22, a machine learning force field (MLFF) to drive molecular dynamics simulations through which we unveil the mechanisms of CNT formation, from nucleation to growth including defect formation and healing. We find the tube-catalyst interface to be highly dynamic, with large fluctuations in the chiral structure of the CNT-edge. This does not support continuous spiral growth as a general mechanism, instead, at these growth conditions, the growing tube edge exhibits significant configurational entropy. We demonstrate that defects form stochastically at the tube-catalyst interface, but under low growth rates and high temperatures, these heal before becoming incorporated in the tube wall, allowing CNTs to grow defect-free to seemingly unlimited lengths. These insights, not readily available through experiments, demonstrate the remarkable power of MLFF-driven simulations and fill long-standing gaps in our understanding of CNT growth mechanisms.

8.
Blood Purif ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740012

ABSTRACT

BACKGROUND: Blood purification therapy for patients overloaded with metabolic toxins or drugs still needs improvement. Blood purification therapies, such as in hemodialysis or peritoneal dialysis can profit from a combined application with nanoparticles. SUMMARY: In this review, the published literature is analyzed with respect to nanomaterials that have been customized and functionalized as nano-adsorbents during blood purification therapy. Liposomes possess a distinct combined structure composed of a hydrophobic lipid bilayer and a hydrophilic core. The liposomes which have enzymes in their aqueous core or obtain specific surface modifications of the lipid bilayer can offer appreciated advantages. Preclinical and clinical experiments with such modified liposomes show that they are highly efficient and generally safe. They may serve as indirect and direct adsorption materials both in hemodialysis and peritoneal dialysis treatment for patients with renal or hepatic failure. Apart from dialysis, nanoparticles made of specially designed metal and activated carbon have also been utilized to enhance the removal of solutes during hemoadsorption. Results are a superior adsorption capacity and a good hemocompatibility shown during treatment of patients with toxication or end-stage renal disease. In summary, nanomaterials are promising tools for improving the treatment efficacy of organ failure or toxication. KEY MESSAGES The pH-transmembrane liposomes and enzyme-loaded liposomes are two representatives of liposomes with modified aqueous inner core which have been put into practice in dialysis. Unmodified or physiochemically modified liposomal bilayers are ideal binders for lipophilic protein-bound uremic toxins or cholestatic solutes, thus liposome-supported dialysis could become the next-generation hemodialysis treatment of artificial liver support system. Novel nano-based sorbents featuring large surface area, high adsorption capacity and decent biocompatibility have shown promise in treatment of uremia, hyperbilirubinemia, intoxication, and sepsis. A major challenge of production lies in avoiding changes in physical and chemical properties induced by manufacturing and sterilizing procedures.

9.
Commun Chem ; 7(1): 107, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724592

ABSTRACT

Modifications of complexes by attachment of anchor groups are widely used to control molecule-surface interactions. This is of importance for the fabrication of (catalytically active) hybrid systems, viz. of surface immobilized molecular catalysts. In this study, the complex fac-Re(S-Sbpy)(CO)3Cl (S-Sbpy = 3,3'-disulfide-2,2'-bipyridine), a sulfurated derivative of the prominent Re(bpy)(CO)3Cl class of CO2 reduction catalysts, was deposited onto the clean Ag(001) surface at room temperature. The complex is thermostable upon sublimation as supported by infrared absorption and nuclear magnetic resonance spectroscopy. Its anchoring process has been analyzed using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The growth behavior was directly contrasted to the one of the parent complex fac-Re(bpy)(CO)3Cl (bpy = 2,2'-bipyridine). The sulfurated complex nucleates as single molecule at different surface sites and at molecule clusters. In contrast, for the parent complex nucleation only occurs in clusters of several molecules at specifically oriented surface steps. While this shows that surface immobilization of the sulfurated complex is more efficient as compared to the parent, symmetry analysis of the STM topographic data supported by DFT calculations indicates that more than 90% of the complexes adsorb in a geometric configuration very similar to the one of the parent complex.

10.
J Chem Inf Model ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745385

ABSTRACT

Human calcitonin (hCT) regulates calcium-phosphorus metabolism, but its amyloid aggregation disrupts physiological activity, increases thyroid carcinoma risk, and hampers its clinical use for bone-related diseases like osteoporosis and Paget's disease. Improving hCT with targeted modifications to mitigate amyloid formation while maintaining its function holds promise as a strategy. Understanding how each residue in hCT's amyloidogenic core affects its structure and aggregation dynamics is crucial for designing effective analogues. Mutants F16L-hCT and F19L-hCT, where Phe residues in the core are replaced with Leu as in nonamyloidogenic salmon calcitonin, showed different aggregation kinetics. However, the molecular effects of these substitutions in hCT are still unclear. Here, we systematically investigated the folding and self-assembly conformational dynamics of hCT, F16L-hCT, and F19L-hCT through multiple long-time scale independent atomistic discrete molecular dynamics (DMD) simulations. Our results indicated that the hCT monomer primarily assumed unstructured conformations with dynamic helices around residues 4-12 and 14-21. During self-assembly, the amyloidogenic core of hCT14-21 converted from dynamic helices to ß-sheets. However, substituting F16L did not induce significant conformational changes, as F16L-hCT exhibited characteristics similar to those of wild-type hCT in both monomeric and oligomeric states. In contrast, F19L-hCT exhibited substantially more helices and fewer ß-sheets than did hCT, irrespective of their monomers or oligomers. The substitution of F19L significantly enhanced the stability of the helical conformation for hCT14-21, thereby suppressing the helix-to-ß-sheet conformational conversion. Overall, our findings elucidate the molecular mechanisms underlying hCT aggregation and the effects of F16L and F19L substitutions on the conformational dynamics of hCT, highlighting the critical role of F19 as an important target in the design of amyloid-resistant hCT analogs for future clinical applications.

11.
Nanoscale ; 16(19): 9348-9360, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38651870

ABSTRACT

Understanding nanoparticle-cell interaction is essential for advancing research in nanomedicine and nanotoxicology. Apart from the transcytotic pathway mediated by cellular recognition and energetics, nanoparticles (including nanomedicines) may harness the paracellular route for their transport by inducing endothelial leakiness at cadherin junctions. This phenomenon, termed as NanoEL, is correlated with the physicochemical properties of the nanoparticles in close association with cellular signalling, membrane mechanics, as well as cytoskeletal remodelling. However, nanoparticles in biological systems are transformed by the ubiquitous protein corona and yet the potential effect of the protein corona on NanoEL remains unclear. Using confocal fluorescence microscopy, biolayer interferometry, transwell, toxicity, and molecular inhibition assays, complemented by molecular docking, here we reveal the minimal to significant effects of the anionic human serum albumin and fibrinogen, the charge neutral immunoglobulin G as well as the cationic lysozyme on negating gold nanoparticle-induced endothelial leakiness in vitro and in vivo. This study suggests that nanoparticle-cadherin interaction and hence the extent of NanoEL may be partially controlled by pre-exposing the nanoparticles to plasma proteins of specific charge and topology to facilitate their biomedical applications.


Subject(s)
Cadherins , Fibrinogen , Gold , Metal Nanoparticles , Protein Corona , Protein Corona/chemistry , Protein Corona/metabolism , Humans , Cadherins/metabolism , Cadherins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Fibrinogen/chemistry , Fibrinogen/metabolism , Animals , Human Umbilical Vein Endothelial Cells , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Muramidase/chemistry , Muramidase/metabolism , Molecular Docking Simulation , Mice
12.
Sci Adv ; 10(17): eado2515, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657064

ABSTRACT

The hydrologic cycle has wide impacts on the ocean salinity and circulation, carbon and nitrogen cycles, and the ecosystem. Under anthropogenic global warming, previous studies showed that the intensification of the hydrologic cycle is a robust feature. Whether this trend persists in hothouse climates, however, is unknown. Here, we show in climate models that mean precipitation first increases with rising surface temperature, but the precipitation trend reverses when the surface is hotter than ~320 to 330 kelvin. This nonmonotonic phenomenon is robust to the cause of warming, convection scheme, ocean dynamics, atmospheric mass, planetary rotation, gravity, and stellar spectrum. The weakening occurs because of the existence of an upper limitation of outgoing longwave emission and the continuously increasing shortwave absorption by H2O and is consistent with atmospheric dynamics featuring the strong increase of atmospheric stratification and marked reduction of convective mass flux. These results have wide implications for the climate evolutions of Earth, Venus, and potentially habitable exoplanets.

13.
J Ethnopharmacol ; 329: 118178, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38604511

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is widely used clinically as one of the most famous traditional Chinese herbs. Its herb roasted with honey is called honey-processed licorice (HPL). Modern studies have shown that HPL has a stronger cardioprotective ability compared to raw licorice (RL), however the material basis and mechanism of action of the potential cardioprotection have not been fully elucidated. AIM OF THE STUDY: To screen and validate the material basis of cardioprotection exerted by HPL and to preliminarily predict the potential mechanism of action. MATERIALS AND METHODS: UPLC-QTOF-MS/MS was used to analyze HPL samples with different processing levels, and differential compounds were screened out through principal component analysis. Network pharmacology and molecular docking were applied to explore the association between differential compounds and doxorubicin cardiomyopathy and their mechanisms of action were predicted. An in vitro model was established to verify the cardioprotective effects of differential compounds. RESULTS: Six differential compounds were screened as key components of HPL for potential cardioprotection. Based on network pharmacology, 113 potential important targets for the treatment of Dox-induced cardiotoxicity were screened. KEGG enrichment analysis predicted that the PI3K-Akt pathway was closely related to the mechanism of action of active ingredients. Molecular docking results showed that the six differential compounds all had good binding activity with Nrf2 protein. In addition, in vitro experiments had shown that five of the active ingredients (liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin, and licochalcone A) can significantly increase Dox-induced H9c2 cell viability, SOD activity, and mitochondrial membrane potential, significantly reduces MDA levels and inhibits ROS generation. CONCLUSION: Liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin and licochalcone A are key components of HPL with potential cardioprotective capabilities. Five active ingredients can alleviate Dox-induced cardiotoxicity by inhibiting oxidative stress and mitochondrial damage.


Subject(s)
Doxorubicin , Honey , Molecular Docking Simulation , Myocytes, Cardiac , Network Pharmacology , Doxorubicin/toxicity , Animals , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rats , Chalcones/pharmacology , Chalcones/isolation & purification , Glycyrrhiza uralensis/chemistry , Cardiotonic Agents/pharmacology , Cardiotonic Agents/isolation & purification , Cell Survival/drug effects , Flavanones/pharmacology , Flavanones/isolation & purification , NF-E2-Related Factor 2/metabolism , Cell Line , Cardiotoxicity/prevention & control , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Signal Transduction/drug effects , Glucosides
14.
Biophys Chem ; 309: 107235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608617

ABSTRACT

The misfolding and aggregation of human islet amyloid polypeptide (hIAPP), also known as amylin, have been implicated in the pathogenesis of type 2 diabetes (T2D). Heat shock proteins, specifically, heat shock cognate 70 (Hsc70), are molecular chaperones that protect against hIAPP misfolding and inhibits its aggregation. Nevertheless, there is an incomplete understanding of the mechanistic interactions between Hsc70 domains and hIAPP, thus limiting their potential therapeutic role in diabetes. This study investigates the inhibitory capacities of different Hsc70 variants, aiming to identify the structural determinants that strike a balance between efficacy and cytotoxicity. Our experimental findings demonstrate that the ATPase activity of Hsc70 is not a pivotal factor for inhibiting hIAPP misfolding. We underscore the significance of the C-terminal substrate-binding domain of Hsc70 in inhibiting hIAPP aggregation, emphasizing that the removal of the lid subdomain diminishes the inhibitory effect of Hsc70. Additionally, we employed atomistic discrete molecular dynamics simulations to gain deeper insights into the interaction between Hsc70 variants and hIAPP. Integrating both experimental and computational findings, we propose a mechanism by which Hsc70's interaction with hIAPP monomers disrupts protein-protein connections, primarily by shielding the ß-sheet edges of the Hsc70-ß-sandwich. The distinctive conformational dynamics of the alpha helices of Hsc70 potentially enhance hIAPP binding by obstructing the exposed edges of the ß-sandwich, particularly at the ß5-ß8 region along the alpha helix interface. This, in turn, inhibits fibril growth, and similar results were observed following hIAPP dimerization. Overall, this study elucidates the structural intricacies of Hsc70 crucial for impeding hIAPP aggregation, improving our understanding of the potential anti-aggregative properties of molecular chaperones in diabetes treatment.


Subject(s)
Diabetes Mellitus, Type 2 , HSC70 Heat-Shock Proteins , Islet Amyloid Polypeptide , Humans , Diabetes Mellitus, Type 2/metabolism , Heat-Shock Response , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Molecular Chaperones/metabolism , Molecular Dynamics Simulation , HSC70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism
15.
Angew Chem Int Ed Engl ; : e202403015, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623043

ABSTRACT

Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.

16.
Nat Commun ; 15(1): 3622, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684741

ABSTRACT

Vertical semiconducting fins integrated with high-κ oxide dielectrics have been at the centre of the key device architecture that has promoted advanced transistor scaling during the last decades. Single-fin channels based on two-dimensional (2D) semiconductors are expected to offer unique advantages in achieving sub-1 nm fin-width and atomically flat interfaces, resulting in superior performance and potentially high-density integration. However, multi-fin structures integrated with high-κ dielectrics are commonly required to achieve higher electrical performance and integration density. Here we report a ledge-guided epitaxy strategy for growing high-density, mono-oriented 2D Bi2O2Se fin arrays that can be used to fabricate integrated 2D multi-fin field-effect transistors. Aligned substrate steps enabled precise control of both nucleation sites and orientation of 2D fin arrays. Multi-channel 2D fin field-effect transistors based on epitaxially integrated 2D Bi2O2Se/Bi2SeO5 fin-oxide heterostructures were fabricated, exhibiting an on/off current ratio greater than 106, high on-state current, low off-state current, and high durability. 2D multi-fin channel arrays integrated with high-κ oxide dielectrics offer a strategy to improve the device performance and integration density in ultrascaled 2D electronics.

17.
Nat Mater ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589543

ABSTRACT

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

18.
Adv Sci (Weinh) ; : e2310314, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582521

ABSTRACT

Understanding the environmental health and safety of nanomaterials (NanoEHS) is essential for the sustained development of nanotechnology. Although extensive research over the past two decades has elucidated the phenomena, mechanisms, and implications of nanomaterials in cellular and organismal models, the active remediation of the adverse biological and environmental effects of nanomaterials remains largely unexplored. Inspired by recent developments in functional amyloids for biomedical and environmental engineering, this work shows their new utility as metallothionein mimics in the strategically important area of NanoEHS. Specifically, metal ions released from CuO and ZnO nanoparticles are sequestered through cysteine coordination and electrostatic interactions with beta-lactoglobulin (bLg) amyloid, as revealed by inductively coupled plasma mass spectrometry and molecular dynamics simulations. The toxicity of the metal oxide nanoparticles is subsequently mitigated by functional amyloids, as validated by cell viability and apoptosis assays in vitro and murine survival and biomarker assays in vivo. As bLg amyloid fibrils can be readily produced from whey in large quantities at a low cost, the study offers a crucial strategy for remediating the biological and environmental footprints of transition metal oxide nanomaterials.

19.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38617316

ABSTRACT

Apolipoprotein E (APOE) is responsible for lipid transport, including cholesterol transport and clearance. While the ε4 allele of APOE (APOE4) is associated with a significant genetic risk factor for late-onset Alzheimer's disease (AD), no mechanistic understanding of its contribution to AD etiology has been established yet. In addition to cholesterol, monosialotetrahexosylganglioside (GM1) is a crucial lipid component in cell membranes and has been implicated in promoting the aggregation of amyloid beta protein (Aß), a key protein associated with AD. Here, we ask whether there are direct interactions between APOE and GM1 that further impact AD pathology. We find that both APOE3 and APOE4 exhibit superior binding affinity to GM1 compared to cholesterol and have an enhanced cellular uptake to GM1 lipid structures than cholesterol lipid structures. APOE regulates the transport process of GM1 depending on the cell type, which is influenced by the expression of APOE receptors in different cell lines and alters GM1 contents in cell membranes. We also find that the presence of GM1 alters the secondary structure of APOE3 and APOE4 and enhances the binding affinity between APOE and its receptor low-density lipoprotein receptor (LDLR), consequently promoting the cellular uptake of lipid structures in the presence of APOE. To understand the enhanced cellular uptake observed in lipid structures containing 20% GM1, we determined the distribution of GM1 on the membrane and found that GM1 clustering in lipid rafts, thereby supporting the physiological interaction between APOE and GM1. Overall, we find that APOE plays a regulatory role in GM1 transport, and the presence of GM1 on the lipid structures influences this transport process. Our studies introduce a plausible direct link between APOE and AD etiology, wherein APOE regulates GM1, which, in turn, promotes Aß oligomerization and aggregation.

20.
Adv Mater ; : e2400800, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593471

ABSTRACT

Following an initial nucleation stage at the flake level, atomically thin film growth of a van der Waals material is promoted by ultrafast lateral growth and prohibited vertical growth. To produce these highly anisotropic films, synthetic or post-synthetic modifications are required, or even a combination of both, to ensure large-area, pure-phase, and low-temperature deposition. A set of synthetic strategies is hereby presented to selectively produce wafer-scale tin selenides, SnSex (both x = 1 and 2), in the 2D forms. The 2D-SnSe2 films with tuneable thicknesses are directly grown via metal-organic chemical vapor deposition (MOCVD) at 200 °C, and they exhibit outstanding crystallinities and phase homogeneities and consistent film thickness across the entire wafer. This is enabled by excellent control of the volatile metal-organic precursors and decoupled dual-temperature regimes for high-temperature ligand cracking and low-temperature growth. In contrast, SnSe, which intrinsically inhibited from 2D growth, is indirectly prepared by a thermally driven phase transition of an as-grown 2D-SnSe2 film with all the benefits of the MOCVD technique. It is accompanied by the electronic n-type to p-type crossover at the wafer scale. These tailor-made synthetic routes will accelerate the low-thermal-budget production of multiphase 2D materials in a reliable and scalable fashion.

SELECTION OF CITATIONS
SEARCH DETAIL
...