Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Arch Dermatol Res ; 309(5): 323-333, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28314912

ABSTRACT

Skin color is determined by the number of melanin granules produced by melanocytes that are transferred to keratinocytes. Melanin synthesis and the distribution of melanosomes to keratinocytes within the epidermal melanin unit (EMU) within the skin of vitiligo patients have been poorly studied. The ultrastructure and distribution of melanosomes in melanocytes and surrounding keratinocytes in perilesional vitiligo and normal skin were investigated using transmission electron microscopy (TEM). Furthermore, we performed a quantitative analysis of melanosome distribution within the EMUs with scatter plot. Melanosome count within keratinocytes increased significantly compared with melanocytes in perilesional stable vitiligo (P < 0.001), perilesional halo nevi (P < 0.01) and the controls (P < 0.01), but not in perilesional active vitiligo. Furthermore, melanosome counts within melanocytes and their surrounding keratinocytes in perilesional active vitiligo skin decreased significantly compared with the other groups. In addition, taking the means-standard error of melanosome count within melanocytes and keratinocytes in healthy controls as a normal lower limit, EMUs were graded into 3 stages (I-III). Perilesional active vitiligo presented a significantly different constitution in stages compared to other groups (P < 0.001). The distribution and constitution of melanosomes were normal in halo nevi. Impaired melanin synthesis and melanosome transfer are involved in the pathogenesis of vitiligo. Active vitiligo varies in stages and in stage II, EMUs are slightly impaired, but can be resuscitated, providing a golden opportunity with the potential to achieve desired repigmentation with an appropriate therapeutic choice. Adverse milieu may also contribute to the low melanosome count in keratinocytes.


Subject(s)
Keratinocytes/metabolism , Melanosomes/metabolism , Nevus, Halo/pathology , Skin Pigmentation/physiology , Vitiligo/pathology , Adolescent , Adult , Epidermal Cells , Epidermis/pathology , Female , Humans , Male , Melanins/metabolism , Melanocytes/pathology , Microscopy, Electron, Transmission , Middle Aged , Young Adult
3.
Arch Dermatol Res ; 307(3): 281-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25672813

ABSTRACT

Vitiligo and halo nevi are both pigmentary disorders of the skin characterized by the acquired loss of functional epidermal melanocytes manifesting as white macules and patches. The cellular mechanism(s) and biochemical changes that result in the appearance of these two types of achromic lesions are still uncertain; and the relationship between vitiligo and halo nevi has been in dispute. In this study, we investigated the ultrastructure of mitochondria in melanocytes and in keratinocytes from perilesional vitiligo skin and from perilesional halo nevi skin using Transmission Electron Microscopy. Furthermore, we performed a quantitative analysis of mitochondrial morphology through a stereological study. As previously reported, we found that melanocytes from perilesional active vitiligo skin were loosely connected with their surroundings by their retracted dendrites. The surface density and the volume density of mitochondria in melanocytes and in keratinocytes from perilesional vitiligo skin are increased significantly compared with the controls, especially in active vitiligo. In contrast, there are no significant differences in mitochondria in melanocytes and in keratinocytes from perilesional halo nevi skin compared with the controls. In summary, the tendency of different morphologic alterations in mitochondria from perilesional vitiligo skin and from perilesional halo nevi skin reflect heterogeneous backgrounds between the two diseases, revealing that vitiligo and halo nevi may have separate pathogenic mechanisms. These findings may help elucidate the relationship of these two diseases and their underlying mechanisms.


Subject(s)
Keratinocytes/ultrastructure , Melanocytes/ultrastructure , Mitochondria/ultrastructure , Nevus, Halo/diagnosis , Vitiligo/diagnosis , Adolescent , Adult , Cells, Cultured , Diagnosis, Differential , Female , Humans , Male , Microscopy, Electron, Transmission , Middle Aged , Skin/pathology , Young Adult
4.
Drug Des Devel Ther ; 8: 2539-47, 2014.
Article in English | MEDLINE | ID: mdl-25548516

ABSTRACT

BACKGROUND: Stevens-Johnson Syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare but severe cutaneous drug reactions. They are differentiated based on the fraction of the body surface area affected. Optimal therapy for SJS and TEN is a controversial issue. OBJECTIVE: We compared the treatments given to and the clinical outcomes of 39 cases of SJS and 48 cases of TEN seen at a single institution between January 2007 and December 2013 for better understanding of the clinical characteristics and development of the two conditions. METHODS: Demographic data, clinical characteristics, treatments given, and therapeutic responses observed were retrospectively collected. RESULTS: The incidence rates of hypoproteinemia and secondary infections are significantly higher in TEN than in SJS (P=0.001 and P=0.002, respectively). The corticosteroid dose did not influence the time from the initiation of therapy to control of the lesions in SJS, but increasing the dosage of corticosteroids progressively decreased the time from the initiation of therapy to control of the lesions in TEN. With increases in the utilization ratio of intravenous immunoglobulin (IVIG), the length of the hospital stay became shorter, whereas the time from the initiation of therapy to control of the lesions remained the same in SJS. However, for TEN, both the length of the hospital stay and the time from the initiation of therapy to control of the lesions became shorter with increases in the utilization ratio of IVIG. CONCLUSION: SJS and TEN are two variants of the same spectrum, and they differ from each other not only in the severity of epidermal detachment but also in other clinical parameters and their distinct clinical courses. Thus, differential treatment of both conditions may have benefits for their prognosis.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Stevens-Johnson Syndrome/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Child , China , Humans , Immunoglobulins/administration & dosage , Immunoglobulins/metabolism , Middle Aged , Retrospective Studies , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...