Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Med Phys ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828903

ABSTRACT

BACKGROUND: Electron beams are used at extended distances ranging between 300 to 700 cm to uniformly cover the entirety of the patient's skin for total skin electron therapy (TSET). Even with electron beams utilizing the high dose rate total skin electron (HDTSe) mode from the Varian 23iX or TrueBeam accelerators, the dose rate is only 2500 cGy/min at source-to-surface distance (SSD) = 100 cm. At extended distances, the decrease in dose rate leads to long beam delivery times that can limit or even prevent the use of the treatment for patients who, in their weakened condition, may be unable to stand on their own for extended periods of time. Previously, to increase dose rate, a customized 6 MeV electron beam was created by removing the x-ray target, flattening filter, beam monitor chamber, and so forth. from the beam path (Chen, et at IJROBP 59, 2004) for TSET. Using this scattering-foil free (SFF) electron beam requires the treatment distance be extended to 700 cm to achieve dose uniformity from the single beam. This room size requirement has limited the widespread use of the 6 MeV-SFF beam. PURPOSE: This study explores an application of a dual-field technique with a 6 MeV-SFF beam to provide broad and uniform electron fields to reduce the treatment distances in order to overcome treatment room size limitations. METHODS: The EGSnrc system was used to generate incident beams. Gantry angles between 6 MeV-SFF dual-fields were optimized to achieve the similar patient skin dose distribution resulting from a standard 6 MeV-HDTSe dual-field configuration. The patient skin dose comparisons were performed based on the patient treatment setup geometries using dose-volume-histograms. RESULTS: Similar dose coverage can be achieved between 6 MeV-SFF and 6 MeV-HDTSe beams by reducing gantry angles between dual-field geometries by 8° and 7° at treatment distances of 400 and 500 cm, respectively. To achieve 95% mean dose to the first 5 mm of skin depth in the torso area, the mean dose to depths of 5-10 mm and 10-15 mm below the skin surface was 74% (74%) and 49% (50%) of the prescribed dose when using 6 MeV-SFF (6 MeV-HDTSe) beam, respectively. CONCLUSIONS: The 6 MeV-SFF electron beam is feasible to provide similar TSET skin dose coverage at SSD ≥ 400 cm using a dual-field technique. The dose rate of the 6 MeV-SFF beam is about 4 times that of current available 6 MeV-HDTSe beams at treatment distances of 400-500 cm, which significantly shortens the treatment beam-on time and makes TSET available to patients in weakened conditions.

2.
Med Phys ; 50(8): 5201-5211, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37122235

ABSTRACT

BACKGROUND: Stereotactic radiosurgery (SRS) relies on small fields to ablate lesions. Currently, linac based treatment is delivered via circular cones using a 6 MV beam. There is interest in both lower energy photon beams, which can offer steeper dose fall off as well as higher energy photon beams, which have higher dose rates, thus reducing radiation delivery times. Of interest in this study is the 2.5 MV beam developed for imaging applications and both the 6 and 10 MV flattening-filter-free (FFF) beams, which can achieve dose rates up to 2400 cGy/min. PURPOSE: This study aims to assess the benefit and feasibility among different energy beams ranging from 2.5 to 10 MV beams by evaluating the dosimetric effects of each beam and comparing the dose to organs-at-risk (OARs) for two separate patient plans. One based on a typical real patient tremor utilizing a 4 mm cone and the other a typical brain metastasis delivered with a 10 mm cone. METHODS: The Monte Carlo codes BEAMnrc/DOSXYZnrc were used to generate beams of 2.5 MV, 6 MV-FFF, 6 MV-SRS, 6 MV, 10 MV-FFF, and 10 MV from a Varian TrueBeam except 6 MV-SRS, which is taken from a Varian TX model linear accelerator. Each beam's energy spectrum, mean energy, %dd curve, and dose profile were obtained by analyzing the simulated beams. Calculated patient dose distributions were compared among six different energy beam configurations based on a realistic treatment plan for thalamotomy and a conventional brain metastasis plan. Dose to OARs were evaluated using dose-volume histograms for the same target dose coverage. RESULTS: The mean energies of photons within the primary beam projected area were insensitive to cone sizes and the values of percentage depth-dose curves (%dd) at d = 5 cm and SSD = 95 cm for a 4 mm (10 mm) cone ranges from 62.6 (64.4) to 82.2 (85.7) for beam energy ranging from 2.5 to 10 MV beams, respectively. Doses to OARs were evaluated among these beams based on real treatment plans delivering 15 000 and 2200 cGy to the target with a 4 and 10 mm cone, respectively. The maximum doses to the brainstem, which is 10 mm away from the isocenter, was found to be 434 (300), 632 (352), 691 (362), 733 (375), 822 (403), and 975 (441) cGy for 2.5 MV, 6 MV-FFF, 6 MV-SRS, 6 MV, 10 MV-FFF, and 10 MV beams delivering 15 000 (2200) cGy target dose, respectively. CONCLUSION: Using the 6 MV-SRS as reference, changes of the maximum dose (691 cGy) to the brain stem are -37%, -9%, +6%, +19%, and 41% for 2.5 MV, 6 MV-FFF, 6 MV, 10 MV-FFF, and 10 MV beams, respectively, based on the thalamotomy plan, where the "-" or "+" signs indicate the percentage decrease or increase. Changes of the maximum dose (362 cGy) to brain stem, based on the brain metastasis plan are much less for respective beam energies. The sum of 21 arcs beam-on time was 39 min on our 6 MV-SRS beam with 1000 cGy/min for thalamotomy. The beam-on time can be reduced to 16 min with 10 MV-FFF.


Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Radiosurgery/methods , Radiometry/methods , Particle Accelerators , Photons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Radiotherapy Dosage
3.
Med Phys ; 50(6): 3833-3841, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36734482

ABSTRACT

BACKGROUND: There is a major conceptual difference between small-field and large field dosimetry that is, different definition of the field size. The dosimetry protocol IAEA TRS-483 recommends the use of the field size defined by measured dose profiles (full-width half maximum, FWHM) that is significantly different from conventional field size definition by the geometric field opening of MLC/Jaw at the isocenter. The application of the effective field size concept, Sclin , was introduced by Cranmer-Sargison et al. (DOI:10.1016/j.radonc.2013.10.002) as a reporting mechanism for field output factors of rectangular fields. The study by Das et al. (DOI:10.1002/mp.15624) indicated the limitations of obtaining the field size by experimentally measuring FWHM, for example, the measured FWHM is smaller than beam geometric size, which is contradictory to what is expected as a result of partial occlusion of the primary photon source by the collimating devices. Cranmer-Sargison et al. and Das et al suggested that additional investigations are needed to evaluate its limitations. PURPOSE: This study investigates the validity of the field size definition by FWHM and by MLC/Jaw opening and finds the pros and cons between these two methods to resolve the controversial issue. METHODS: The FWHM can be obtained by measuring or calculating dose profiles. Using Monte Carlo simulations this study compares the field size obtained by FWHM and by field geometric field opening. The EGSnrc system is used to simulate 6 MV beam to generate square and rectangular fields from 5-30 mm with every possible permutation (keeping one jaw fixed and varying other jaw from 5 to 30 mm). The calculated FWHM and output factors are compared with measurements obtained by a microSilicon detector. RESULTS: The results show that field width (FWHM) derived from MC calculations generally agrees with machine geometric field width within 0.5 mm for square or rectangular fields with a minimum field width of ≥8 mm. For the extremely small fields with a minimum field width of 5 mm the discrepancies are up to 1.6 mm. The field width (FWHM) obtained by measuring dose profiles are unreliable for small fields due to the measurement uncertainties for an extremely small field. The effect of partial occlusion of the primary photon source by the jaws on the beam axis is clearly observed in the calculated dose profiles. For the extremely small field width of 5 mm, Monte Carlo predicted up to 10% exchange factor differences which are confirmed by the measurements. CONCLUSION: The field size defined by the geometric opening of the beam-defining system, is still valid for small fields. The field size defined by geometric opening is independent of measurement uncertainties, independent of machine design, and highly reproducible. It is feasible to accurately tabulate the output factors as a function of geometric field opening thus eliminating user and detector choice for FWHM measurements. The field output factor of a small rectangular field cannot be related to an equivalent field size without considering the exchange factor due to partial occlusion of the photon source.


Subject(s)
Photons , Radiometry , Monte Carlo Method , Uncertainty , Particle Accelerators
4.
Med Phys ; 49(10): 6646-6653, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35972019

ABSTRACT

PURPOSE: Total skin electron therapy (TSET) has proven to be one of the most effective treatments for advanced-stage cutaneous T-cell lymphoma. Two most used techniques are the Stanford six-field and rotational techniques. This study compares patient skin dose distributions as a function of depth between these two techniques. METHODS: The EGSnrc system was used to simulate electron beams and calculate patient dose distributions. The calculations assumed the same patient standing on a platform, and the patient's different postures were ignored for the Stanford technique in the comparison of dose distributions. The skin doses were analyzed as a function of skin depth-dose coverage and evaluated using dose-volume-histograms (DVH). The comparisons were performed in three realistic clinical settings in which dual-field were used for patients treated at extended distances of 316 and 500 cm, and a single field was used at 700 cm. In all cases the realistic patient treatment beam delivery geometry was simulated. RESULTS: Although small dose differences were observed in some local areas, no clinically significant differences were found in the patient 3D dose distributions between the Stanford and rotational techniques. Virtually the same DVH curves between two the techniques were observed for mean dose to skin depth of 0-5, 5-10, and 10-15 mm from the skin surface, respectively. It is found that the skin depth dose coverage is 2 mm shallower for patient treatment at 500 cm compared to at 316 cm due to the additional air attenuation. However, very similar dose coverage and uniformity can be achieved at these two different extended treatment distances by adjusting the thickness of acrylic scatter plate. Adequate thickness of a scattering plate improves the skin dose uniformity. CONCLUSION: Both the Stanford and rotational techniques deliver very similar skin dose coverage in DVH plots, and only small differences are seen in local areas. It is worth to emphasize that the DVH is a graphical representation of the distribution of dose within a structure, and it does not contain spatial information. Therefore, comparison of entire skin dose using DVH may mask some variations at different locations of the surface area. In addition, the comparison did not consider different patient postures of the Stanford technique. Including the different patient postures in the calculation may affect the result of doses to the limbs.


Subject(s)
Electrons , Skin Neoplasms , Humans , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Skin
5.
Med Phys ; 49(6): 4043-4055, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35344220

ABSTRACT

PURPOSE: The equivalent square (ES) concept has been used for traditional radiation fields defined by the machine collimating system. For small fields, the concept Sclin was introduced based on measuring dosimetric field width (full-width half maximum, FWHM) of the cardinal axis of the beam profiles. The pros and cons of this concept are evaluated in small fields and compared with the traditional ES using area and perimeter (4A/P) method based on geometric field size settings, for example, light field settings. METHODS: One hundred thirty-seven square and rectangular fields from 5-50 mm with every possible permutation (keeping one jaw fixed and varying other jaw from 5 to 50 mm) were utilized to measure FWHM for the validation of Sclin . Using a microSilicon detector and a scanning water tank, measurements were performed on an Elekta (Versa) machine with Agility head and a Varian TrueBeam with different MLC/Jaw design to evaluate the Sclin concept and to understand the effect of exchange factor in small fields. Field output factors were also measured for all 137 fields. RESULTS: The data fitting for fields ranging from 5-50 mm between the traditional 4A/P method and Sclin shows differences and indicates a linear relationship with distinct separation of slope for Elekta and Varian machines. For Elekta Agility machine ES based on 4A/P < Sclin and for the VarianTrueBeam  4A/P > Sclin for square fields. Our measured data show that both methods are equally valid but does vary by the machine design. The field output factor is dependent on the elongation factor as well as machine design. For fields with sides ≥10 mm, the exchange factor is nearly identical in both machines with magnitude up to 4%, which is close to measurement uncertainty (±3%), but for small fields (< 10 mm), the Elekta machine has higher exchange factors compared to the Varian machine. CONCLUSION: The results demonstrate that the two concepts for defining equivalent field (Sclin and 4A/P) are equivalent and can be directly related through an empirical equation. This study confirms that 4A/P is still valid for small fields except for very small fields (≤10 mm) where source occlusion is a dominating factor. The Sclin method is potentially sensitive to measurement uncertainty due to measurement of FWHM which is machine-, detector- and user-dependent, while the 4A/P method relies mainly on geometry of the machine and has less dependency on type of machine, detector, and user. The exchange factors are comparable for both types of machines. The conclusion is based on data from an Elekta with Agility head and a Varian TrueBeam machine that may have potential for bias due to light field/collimator set up and alignment. Care should be taken in extrapolating these data to any other machine.


Subject(s)
Particle Accelerators , Radiometry , Radiometry/methods , Uncertainty
6.
Med Phys ; 49(2): 1297-1302, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34964133

ABSTRACT

PURPOSE: Electron beam from a linear accelerator is commonly used in total skin electron therapy (TSET) at extended distances. Since Das et al (Med Phys 21, p.1733, 1994) reported 5% bremsstrahlung dose for a 6 MeV electron beam at extended distance of 500 cm it has been accepted as common knowledge. However, measurements by Chen et al (Int J. Rad Onc Biol Phys 59 p.872, 2004) and Monte Carlo simulations by Ding et al (Phys. Med. Biol. 66, 075010, 2021) were unable to reproduce such high bremsstrahlung dose. As bremsstrahlung dose contributes to whole-body dose, which could produce bone marrow toxicity with serious complications for the outcome of the TSET, it is important to re-evaluate the magnitude of bremsstrahlung dose accurately. METHODS: The EGSnrc Monte Carlo system is used to investigate bremsstrahlung doses from 6 MeV high dose rate total skin electron (HDTSe) beams from Varian TrueBeam and Clinac Accelerators. The measurements were carried out at a depth of dmax and 5 cm in Solid Water and Acrylic phantoms at extended distances using a parallel-plate chamber and a cylindrical ion chamber. RESULTS: We were able to reproduce previously reported high bremsstrahlung dose at extended distances by using a parallel plate ionization chamber. However, both the measurements made by using a cylindrical chamber and Monte Carlo simulations showed an insignificant bremsstrahlung dose (∼1%) even at SSD = 500 cm. CONCLUSION: The bremsstrahlung doses of a 6 MeV electron beam are 0.5% to 1% for SSD from 100 to 700 cm, although it increases with the increasing extended distance. The common belief of up to 5% bremsstrahlung dose at large extended distances is incorrect. Previously reported high bremsstrahlung doses might be due to poor signal-to-noise ratio of using a parallel plate chamber for measuring very low dose or particular setup.


Subject(s)
Electrons , Radiometry , Monte Carlo Method , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage
7.
Med Phys ; 48(9): 5472-5478, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34287969

ABSTRACT

PURPOSE: The electron beams for total skin electron therapy (TSET) are often degraded by a scatter plate in addition to extended distances. For electron dosimetry, both the AAPM TG-51 and IAEA TRS-398 recommend the use of two formulas developed by Burns et al [Med. Phys. 23, 489-501 (1996)] to estimate the water-to-air stopping-power ratios (SPRs). Both formulas are based on a fit to SPRs calculated for standard electron beams. This study aims to find: (1) if the formulas are applicable to beams used in TSET and (2) the impact of the ICRU report 90 recommendations on the SPRs for these beams. METHODS: The EGSnrc Monte Carlo code system is used to generate 6 MeV high dose rate total skin electron (HDTSe) beams used in TSET. The simulated beams are used to calculate dose distributions and SPRs as a function of depth in a water phantom. The fitted SPRs using the empirical formulas are compared with MC-calculated SPRs. RESULTS: The electron beam quality specifier, the depth in water at which the absorbed dose falls to 50% of its maximum value, R50 , decreases approximately 1 mm for each additional 100-cm extended distance ranging from 2.24 cm at SSD = 100 to 1.72 cm at SSD = 700 cm. For beams passing through a scatter plate, R50 is 1.76 cm (1.14) at SSD = 300 and 1.48 cm (0.85 cm) at SSD = 600 cm with an Acrylic plate thickness of 3 mm (9 mm), respectively. The discrepancy between fitted and MC-calculated SPRs at dref as a function of R50 is <0.8%, and in many cases <0.4%. The difference between fitted and MC-calculated SPRs as a function of depth and R50 is within 1% at depths <0.8R50 for beams with R50  ≥ 1.14 cm. The ICRU-90 recommendations decrease SPRs by 0.3%-0.4% compared to the use of data recommended in ICRU-37. CONCLUSION: The formulas used by the major protocols are accurate enough for clinical beams used in TSET and the error caused using the formulas is <1% to estimate SPRs as a function of depth and R50 for depths <0.8R50 for beams used in TSET with R50  ≥ 1.14 cm. The impact of the ICRU-90 recommendations shows a decrease of SPRs by a fraction of a percent for beams used in TSET.


Subject(s)
Electrons , Radiometry , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted
8.
Med Phys ; 48(10): e886-e921, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34101836

ABSTRACT

Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.


Subject(s)
Photons , Radiometry , International Agencies , Phantoms, Imaging
9.
Phys Med Biol ; 66(7)2021 03 29.
Article in English | MEDLINE | ID: mdl-33706289

ABSTRACT

Total skin electron therapy (TSET) has been used to treat mycosis fungoides since the 1950s. Practitioners of TSET rely on relatively crude, phantom-based point measurements for commissioning and treatment plan dosimetry. Using Monte Carlo simulation techniques, this study presents whole-body dosimetry for a patient receiving rotational, dual-field TSET. The Monte Carlo codes, BEAMnrc/DOSXYZnrc, were used to simulate 6 MeV electron beams to calculate skin dose from TSET. Simulations were validated with experimental measurements. The rotational dual-field technique uses extended source-to-surface distance with an acrylic beam degrader between the patient and incident beams. Simulations incorporated patient positioning: standing on a platform that rotates during radiation delivery. Resultant patient doses were analyzed as a function of skin depth-dose coverage and evaluated using dose-volume-histograms. Good agreement was obtained between simulations and measurements. For a cylinder with a 30 cm diameter, the depths that dose fell to 50% of the surface dose was 0.66 cm, 1.15 cm and 1.42 cm for thicknesses of 9 mm, 3 mm and without an acrylic scatter plate, respectively. The results are insensitive to cylinder diameter. Relatively uniform skin surface dose was obtained for skin in the torso area although large dose variations (>25%) were found in other areas resulting from partial beam shielding of the extremities. To achieve 95% mean dose to the first 5 mm of skin depth, the mean dose to skin depth of 5-10 mm and depth of 10-15 mm from the skin surface was 74% (57%) and 50% (25%) of the prescribed dose when using a 3 mm (9 mm) thickness scatter plate, respectively. As a result of this investigation on patient skin dose distributions we changed our patient treatments to use a 3 mm instead of a 9 mm thickness Acrylic scatter plate for clinically preferred skin depth dose coverage.


Subject(s)
Electrons , Radiometry , Humans , Monte Carlo Method , Phantoms, Imaging , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
10.
Int J Radiat Oncol Biol Phys ; 110(1): 112-123, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33516580

ABSTRACT

PURPOSE: We sought to investigate the tumor control probability (TCP) of spinal metastases treated with stereotactic body radiation therapy (SBRT) in 1 to 5 fractions. METHODS AND MATERIALS: PubMed-indexed articles from 1995 to 2018 were eligible for data extraction if they contained SBRT dosimetric details correlated with actuarial 2-year local tumor control rates. Logistic dose-response models of collected data were compared in terms of physical dose and 3-fraction equivalent dose. RESULTS: Data were extracted from 24 articles with 2619 spinal metastases. Physical dose TCP modeling of 2-year local tumor control from the single-fraction data were compared with data from 2 to 5 fractions, resulting in an estimated α/ß = 6 Gy, and this was used to pool data. Acknowledging the uncertainty intrinsic to the data extraction and modeling process, the 90% TCP corresponded to 20 Gy in 1 fraction, 28 Gy in 2 fractions, 33 Gy in 3 fractions, and (with extrapolation) 40 Gy in 5 fractions. The estimated TCP for common fractionation schemes was 82% at 18 Gy, 90% for 20 Gy, and 96% for 24 Gy in a single fraction, 82% for 24 Gy in 2 fractions, and 78% for 27 Gy in 3 fractions. CONCLUSIONS: Spinal SBRT with the most common fractionation schemes yields 2-year estimates of local control of 82% to 96%. Given the heterogeneity in the tumor control estimates extracted from the literature, with variability in reporting of dosimetry data and the definition of and statistical methods of reporting tumor control, care should be taken interpreting the resultant model-based estimates. Depending on the clinical intent, the improved TCP with higher dose regimens should be weighed against the potential risks for greater toxicity. We encourage future reports to provide full dosimetric data correlated with tumor local control to allow future efforts of modeling pooled data.


Subject(s)
Radiosurgery/methods , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/secondary , Cancer Pain/radiotherapy , Dose-Response Relationship, Radiation , Humans , Logistic Models , Models, Biological , Models, Theoretical , Probability , Radiation Dose Hypofractionation , Radiosurgery/standards , Radiotherapy Dosage , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/pathology , Treatment Outcome , Tumor Burden
11.
J Am Acad Dermatol ; 85(1): 121-127, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33333150

ABSTRACT

INTRODUCTION: Low-dose total skin electron beam therapy provides a durable treatment response for skin lesions caused by cutaneous T-cell lymphoma. We prospectively assessed the durability of response and quality of life for patients receiving low-dose total skin electron beam therapy using a novel rotational technique and dosing regimen. METHODS: Patients completed baseline Skindex-29 quality-of-life surveys and had baseline Modified Severity-Weighted Assessment Tool score recorded. Patients received 12 Gy in 12 fractions with a dual-field rotational technique. The primary outcome was overall response rate, with the secondary outcomes being time to treatment response, duration of clinical benefit, and quality-of-life change. RESULTS: We enrolled 20 patients and recorded an overall response rate of 90%. The median time to treatment response was 6.5 weeks. The baseline Modified Severity-Weighted Assessment Tool score was 55.6 and it declined to a median of 2.2 at last follow-up (P < .001). The median duration of clinical benefit was 21 months. There was a decline in the Skindex-29 total score and every subdomain when each follow-up visit was compared (P = .004). CONCLUSIONS: This prospective study demonstrated a very high overall response rate and improvement in skin-related quality of life. Low-dose rotational total skin electron beam therapy can be implemented routinely in clinical practice.


Subject(s)
Mycosis Fungoides/radiotherapy , Quality of Life , Skin Neoplasms/radiotherapy , Aged , Female , Humans , Male , Middle Aged , Prospective Studies , Radiotherapy/methods , Radiotherapy Dosage , Severity of Illness Index , Surveys and Questionnaires , Time-to-Treatment , Treatment Outcome
12.
Int J Radiat Oncol Biol Phys ; 110(1): 100-111, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33375955

ABSTRACT

PURPOSE: We sought to investigate the tumor control probability (TCP) of vestibular schwannomas after single-fraction stereotactic radiosurgery (SRS) or hypofractionated SRS over 2 to 5 fractions (fSRS). METHODS AND MATERIALS: Studies (PubMed indexed from 1993-2017) were eligible for data extraction if they contained dosimetric details of SRS/fSRS correlated with local tumor control. The rate of tumor control at 5 years (or at 3 years if 5-year data were not available) were collated. Poisson modeling estimated the TCP per equivalent dose in 2 Gy per fraction (EQD2) and in 1, 3, and 5 fractions. RESULTS: Data were extracted from 35 publications containing a total of 5162 patients. TCP modeling was limited by the absence of analyzable data of <11 Gy in a single-fraction, variability in definition of "tumor control," and by lack of significant increase in TCP for doses >12 Gy. Using linear-quadratic-based dose conversion, the 3- to 5-year TCP was estimated at 95% at an EQD2 of 25 Gy, corresponding to 1-, 3-, and 5-fraction doses of 13.8 Gy, 19.2 Gy, and 21.5 Gy, respectively. Single-fraction doses of 10 Gy, 11 Gy, 12 Gy, and 13 Gy predicted a TCP of 85.0%, 88.4%, 91.2%, and 93.5%, respectively. For fSRS, 18 Gy in 3 fractions (EQD2 of 23.0 Gy) and 25 Gy in 5 fractions (EQD2 of 30.2 Gy) corresponded to TCP of 93.6% and 97.2%. Overall, the quality of dosimetric reporting was poor; recommended reporting guidelines are presented. CONCLUSIONS: With current typical SRS doses of 12 Gy in 1 fraction, 18 Gy in 3 fractions, and 25 Gy in 5 fractions, 3- to 5-year TCP exceeds 91%. To improve pooled data analyses to optimize treatment outcomes for patients with vestibular schwannoma, future reports of SRS should include complete dosimetric details with well-defined tumor control and toxicity endpoints.


Subject(s)
Neuroma, Acoustic/radiotherapy , Radiosurgery/methods , Dose Fractionation, Radiation , Humans , Linear Models , Models, Biological , Models, Theoretical , Neurofibromatosis 2/therapy , Poisson Distribution , Probability , Radiosurgery/standards , Radiotherapy Dosage , Relative Biological Effectiveness , Time Factors , Treatment Outcome
13.
Int J Radiat Oncol Biol Phys ; 110(1): 160-171, 2021 05 01.
Article in English | MEDLINE | ID: mdl-30954520

ABSTRACT

PURPOSE: Numerous dose and fractionation schedules have been used to treat medically inoperable stage I non-small cell lung cancer (NSCLC) with stereotactic body radiation therapy (SBRT) or stereotactic ablative radiation therapy. We evaluated published experiences with SBRT to determine local control (LC) rates as a function of SBRT dose. METHODS AND MATERIALS: One hundred sixty published articles reporting LC rates after SBRT for stage I NSCLC were identified. Quality of the series was assessed by evaluating the number of patients in the study, homogeneity of the dose regimen, length of follow-up time, and reporting of LC. Clinical data including 1, 2, 3, and 5-year tumor control probabilities for stages T1, T2, and combined T1 and T2 as a function of the biological effective dose were fitted to the linear quadratic, universal survival curve, and regrowth models. RESULTS: Forty-six studies met inclusion criteria. As measured by the goodness of fit χ2/ndf, with ndf as the number of degrees of freedom, none of the models were ideal fits for the data. Of the 3 models, the regrowth model provides the best fit to the clinical data. For the regrowth model, the fitting yielded an α-to-ß ratio of approximately 25 Gy for T1 tumors, 19 Gy for T2 tumors, and 21 Gy for T1 and T2 combined. To achieve the maximal LC rate, the predicted physical dose schemes when prescribed at the periphery of the planning target volume are 43 ± 1 Gy in 3 fractions, 47 ± 1 Gy in 4 fractions, and 50 ± 1 Gy in 5 fractions for combined T1 and T2 tumors. CONCLUSIONS: Early-stage NSCLC is radioresponsive when treated with SBRT or stereotactic ablative radiation therapy. A steep dose-response relationship exists with high rates of durable LC when physical doses of 43-50 Gy are delivered in 3 to 5 fractions.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cause of Death , Dose-Response Relationship, Radiation , Follow-Up Studies , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Models, Biological , Models, Theoretical , Neoplasm Recurrence, Local/diagnostic imaging , Probability , Radiotherapy Planning, Computer-Assisted , Time Factors
14.
Int J Radiat Oncol Biol Phys ; 110(1): 227-236, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32900561

ABSTRACT

PURPOSE: Dose escalation improves localized prostate cancer disease control, and moderately hypofractionated external beam radiation is noninferior to conventional fractionation. The evolving treatment approach of ultrahypofractionation with stereotactic body radiation therapy (SBRT) allows possible further biological dose escalation (biologically equivalent dose [BED]) and shortened treatment time. METHODS AND MATERIALS: The American Association of Physicists in Medicine Working Group on Biological Effects of Hypofractionated Radiation Therapy/SBRT included a subgroup to study the prostate tumor control probability (TCP) with SBRT. We performed a systematic review of the available literature and created a dose-response TCP model for the endpoint of freedom from biochemical relapse. Results were stratified by prostate cancer risk group. RESULTS: Twenty-five published cohorts were identified for inclusion, with a total of 4821 patients (2235 with low-risk, 1894 with intermediate-risk, and 446 with high-risk disease, when reported) treated with a variety of dose/fractionation schemes, permitting dose-response modeling. Five studies had a median follow-up of more than 5 years. Dosing regimens ranged from 32 to 50 Gy in 4 to 5 fractions, with total BED (α/ß = 1.5 Gy) between 183.1 and 383.3 Gy. At 5 years, we found that in patients with low-intermediate risk disease, an equivalent doses of 2 Gy per fraction (EQD2) of 71 Gy (31.7 Gy in 5 fractions) achieved a TCP of 90% and an EQD2 of 90 Gy (36.1 Gy in 5 fractions) achieved a TCP of 95%. In patients with high-risk disease, an EQD2 of 97 Gy (37.6 Gy in 5 fractions) can achieve a TCP of 90% and an EQD2 of 102 Gy (38.7 Gy in 5 fractions) can achieve a TCP of 95%. CONCLUSIONS: We found significant variation in the published literature on target delineation, margins used, dose/fractionation, and treatment schedule. Despite this variation, TCP was excellent. Most prescription doses range from 35 to 40 Gy, delivered in 4 to 5 fractions. The literature did not provide detailed dose-volume data, and our dosimetric analysis was constrained to prescription doses. There are many areas in need of continued research as SBRT continues to evolve as a treatment modality for prostate cancer, including the durability of local control with longer follow-up across risk groups, the efficacy and safety of SBRT as a boost to intensity modulated radiation therapy (IMRT), and the impact of incorporating novel imaging techniques into treatment planning.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiosurgery/methods , Dose-Response Relationship, Radiation , Humans , Linear Models , Male , Models, Biological , Models, Theoretical , Probability , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Radiation Dose Hypofractionation , Relative Biological Effectiveness , Risk , Time Factors , Treatment Outcome , Urethra/diagnostic imaging
15.
J Med Imaging Radiat Sci ; 50(3): 454-459, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31213358

ABSTRACT

INTRODUCTION: Primary cutaneous anaplastic large cell lymphoma (PCALCL) is a rare T-cell malignancy typically presenting as a solitary lesion treated with radiotherapy. Diffuse PCALCL is rare, and treatment paradigms of diffuse PCALCL are poorly defined. CASE AND OUTCOMES: In this report, a 69-year-old male presented with progressive extensive truncal PCALCL resistant to brentuximab. The truncal lesions were treated with 36 Gy in 18 fractions by a novel approach using rotational electron beam radiation therapy with custom-made shielding. The treatment was well tolerated with expected dermatologic side effects managed supportively. All lesions achieved an initial complete response, and two sites within the treatment field recurred five months after treatment. DISCUSSION: This case adds to the limited literature on diffuse PCALCL and demonstrates an uncommon treatment approach to multifocal PCALCL using rotational electron beam radiation therapy with personalized shielding techniques. The treatment approach here was well tolerated by the patient with initial complete response at all sites. Maximal sparing was especially critical in this patient because of a history of previous head and neck irradiation. Shielded areas were validated by optically stimulated luminescent dosimeters showing dose reduction, confirming the utility of this method. CONCLUSION: Rotational total skin electron beam with personalized shielding may be generalizable to cutaneous malignancies including PCALCL presenting with diffuse skin involvement. Further investigation of diffuse PCALCL is merited to optimize treatment strategies.


Subject(s)
Lymphoma, Primary Cutaneous Anaplastic Large Cell/radiotherapy , Radiotherapy/methods , Skin Neoplasms/radiotherapy , Aged , Humans , Male , Radiation Protection/methods , Radiometry/methods
16.
Med Phys ; 46(6): 2709-2715, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30937910

ABSTRACT

PURPOSE: The limited-angle intrafractional verification (LIVE) system was developed to track tumor movement during stereotactic body radiation therapy (SBRT). However, the four-dimensional (4D) MV/kV imaging procedure results in additional radiation dose to patients. This study is to quantify imaging radiation dose from optimized MV/kV image acquisition in the LIVE system and to determine if it exceeds the American Association of Physicists in Medicine Task Group Report 180 image dose threshold. METHODS: TrueBeam™ platform with a fully integrated system for image guidance was studied. Monte Carlo-simulated kV and MV beams were calibrated and then used as incident sources in an EGSnrc Monte Carlo dose calculation in a CT image-based patient model. In three representative lung SBRT treatments evaluated in this study, tumors were located in the patient's posterior left lung, mid-left lung, and right upper lung. The optimized imaging sequence comprised of arcs ranging from 2 to 7, acquired between adjacent three-dimensional (3D)/IMRT beams, with multiple simultaneous kV (125 kVp) and MV (6 MV) image projections in each arc, for different optimization scenarios. The MV imaging fields were generally confined to the treatment target while kV images were acquired with a normal open field size with a full bow-tie filter. RESULTS: In a seven-arc acquisitions case (highest imaging dose scenario), the maximum kV imaging doses to 50% of the tissue volume (D50 from DVHs), for spinal cord, right lung, heart, left lung, and the target, were 0.4, 0.4, 0.6, 0.7, and 1.4 cGy, respectively. The corresponding MV imaging doses were 0.1 cGy to spinal cord, right lung, heart, and left lung, and 11 cGy to target. In contrast, the maximum radiation dose from two cases treated with two Volumetric-Modulated Arc Therapy (VMAT) fields and two-arc image acquisitions is approximately 30% of that of the seven-arc acquisition. CONCLUSIONS: We have evaluated the additional radiation dose resulting from optimized LIVE system MV/kV image acquisitions in two best (least imaging dose) and one worst (highest imaging dose) lung SBRT treatment scenarios. The results show that these MV/kV imaging doses are comparable to those resulting from current imaging procedures used in Image-Guided Radiation Therapy (IGRT) and are within the dose threshold of 5% target dose as recommended by the AAPM TG-180 report.


Subject(s)
Dose Fractionation, Radiation , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy, Image-Guided/methods , Four-Dimensional Computed Tomography , Humans
17.
J Appl Clin Med Phys ; 19(4): 319-324, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29896876

ABSTRACT

Therapeutic radiation to cancer patients is accompanied by unintended radiation to organs outside the treatment field. It is known that the model-based dose algorithm has limitation in calculating the out-of-field doses. This study evaluated the out-of-field dose calculated by the Varian Eclipse treatment planning system (v.11 with AAA algorithm) in realistic treatment plans with the goal of estimating the uncertainties of calculated organ doses. Photon beam phase-space files for TrueBeam linear accelerator were provided by Varian. These were used as incident sources in EGSnrc Monte Carlo simulations of radiation transport through the downstream jaws and MLC. Dynamic movements of the MLC leaves were fully modeled based on treatment plans using IMRT or VMAT techniques. The Monte Carlo calculated out-of-field doses were then compared with those calculated by Eclipse. The dose comparisons were performed for different beam energies and treatment sites, including head-and-neck, lung, and pelvis. For 6 MV (FF/FFF), 10 MV (FF/FFF), and 15 MV (FF) beams, Eclipse underestimated out-of-field local doses by 30%-50% compared with Monte Carlo calculations when the local dose was <1% of prescribed dose. The accuracy of out-of-field dose calculations using Eclipse is improved when collimator jaws were set at the smallest possible aperture for MLC openings. The Eclipse system consistently underestimates out-of-field dose by a factor of 2 for all beam energies studied at the local dose level of less than 1% of prescribed dose. These findings are useful in providing information on the uncertainties of out-of-field organ doses calculated by Eclipse treatment planning system.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Monte Carlo Method , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage , Uncertainty
18.
Med Phys ; 45(5): e84-e99, 2018 May.
Article in English | MEDLINE | ID: mdl-29468678

ABSTRACT

BACKGROUND: With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. AIMS: This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. MATERIALS & METHODS: We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. RESULTS: We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. DISCUSSION: Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. CONCLUSION: Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient.


Subject(s)
Radiation Dosage , Radiotherapy, Image-Guided/methods , Research Report , Cone-Beam Computed Tomography , Humans , Precision Medicine , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided/instrumentation , Radiotherapy, Intensity-Modulated
19.
J Appl Clin Med Phys ; 19(2): 191-197, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29411506

ABSTRACT

Radiation dermatitis during radiotherapy is correlated with skin dose and is a common clinical problem for head and neck and thoracic cancer patients. Therefore, accurate prediction of skin dose during treatment planning is clinically important. The objective of this study is to evaluate the accuracy of skin dose calculated by a commercial treatment planning system (TPS). We evaluated the accuracy of skin dose calculations by the anisotropic analytical algorithm (AAA) implemented in Varian Eclipse (V.11) system. Skin dose is calculated as mean dose to a contoured structure of 0.5 cm thickness from the surface. The EGSnrc Monte Carlo (MC) simulations are utilized for the evaluation. The 6, 10 and 15 MV photon beams investigated are from a Varian TrueBeam linear accelerator. The accuracy of the MC dose calculations was validated by phantom measurements with optically stimulated luminescence detectors. The calculation accuracy of patient skin doses is studied by using CT based radiotherapy treatment plans including 3D conformal, static gantry IMRT, and VMAT treatment techniques. Results show the Varian Eclipse system underestimates skin doses by up to 14% of prescription dose for the patients studied when external body contour starts at the patient's skin. The external body contour is used in a treatment planning system to calculate dose distributions. The calculation accuracy of skin dose with Eclipse can be considerably improved to within 4% of target dose by extending the external body contour by 1 to 2 cm from the patient's skin. Dose delivered to deeper target volumes or organs at risk are not affected. Although Eclipse treatment planning system has its limitations in predicting patient skin dose, this study shows the calculation accuracy can be considerably improved to an acceptable level by extending the external body contour without affecting the dose calculation accuracy to the treatment target and internal organs at risk. This is achieved by moving the calculation entry point away from the skin.


Subject(s)
Algorithms , Neoplasms/radiotherapy , Phantoms, Imaging , Radiation Injuries/prevention & control , Radiotherapy Planning, Computer-Assisted/methods , Skin/radiation effects , Computer Simulation , Humans , Monte Carlo Method , Organs at Risk/radiation effects , Particle Accelerators , Photons , Radiation Monitoring , Radiotherapy Dosage , Skin Absorption/radiation effects
20.
Radiother Oncol ; 125(3): 541-547, 2017 12.
Article in English | MEDLINE | ID: mdl-29031610

ABSTRACT

PURPOSE: This work provides the beam characteristics and evaluates the imaging dose to patients for a 2.5 MV portal imaging beam. METHOD AND MATERIALS: The Monte Carlo technique has been used to simulate the 2.5 MV imaging beam. Beam characteristics have been analyzed including the energy spectra and the fluence distributions as a function of position away from the beam central axis. The accuracy of a simulated beam was validated through comparisons between the Monte Carlo calculated and measured dose distributions in a water phantom. The simulated 2.5 MV beam was also used to obtain the absorbed-dose beam quality conversion factor, kQ, for absorbed dose calibration. The simulated beams were then used to evaluate the imaging dose to patients compared with that from a conventional therapeutic 6 MV beam. RESULTS: The mean energies of photons and electrons in the 2.5 MV beam are 0.48 MeV and 0.37 MeV respectively. The photon fluence decreases at 20 cm away from the central axis by only up to 30% for this flattening-filter free beam. The values of %dd curves at depth = 10 cm are 53% and 63% for 10 × 10 cm2 and 40 × 40 cm2 fields respectively. Portal imaging doses (D50 of the DVHs) to the eyes, heart and bladder from representative pairs of 2.5 MV (or 6 MV) setup images are 1.8 cGy (3.5 cGy), 1.1 cGy (2.5 cGy) and 1.0 cGy (2.4 cGy) for head, thorax and pelvis image acquisitions respectively. CONCLUSION: We provide dosimetric data, as well as estimates of organ imaging doses, for this 2.5 MV beam. When clinical default imaging protocols are used, the imaging dose from the 2.5 MV beam is about 50% of that from a 6 MV beam. The information can be used to select image procedures and to estimate organ dose from imaging procedures.


Subject(s)
Electrons/therapeutic use , Particle Accelerators , Photons/therapeutic use , Radiotherapy Dosage , Humans , Monte Carlo Method , Thorax/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...