Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 137(6): 131, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748046

ABSTRACT

KEY MESSAGE: Identification of 337 stable MTAs for wheat spike-related traits improved model accuracy, and favorable alleles of MTA259 and MTA64 increased grain weight and yield per plant. Wheat (Triticum aestivum L.) is one of the three primary global, staple crops. Improving spike-related traits in wheat is crucial for optimizing spike and plant morphology, ultimately leading to increased grain yield. Here, we performed a genome-wide association study using a dataset of 24,889 high-quality unique single-nucleotide polymorphisms (SNPs) and phenotypic data from 314 wheat accessions across eight diverse environments. In total, 337 stable and significant marker-trait associations (MTAs) related to spike-related traits were identified. MTA259 and MTA64 were consistently detected in seven and six environments, respectively. The presence of favorable alleles associated with MTA259 and MTA64 significantly reduced wheat spike exsertion length and spike length, while enhancing thousand kernel weight and yield per plant. Combined gene expression and network analyses identified TraesCS6D03G0692300 and TraesCS6D03G0692700 as candidate genes for MTA259 and TraesCS2D03G0111700 and TraesCS2D03G0112500 for MTA64. The identified MTAs significantly improved the prediction accuracy of each model compared with using all the SNPs, and the random forest model was optimal for genome selection. Additionally, the eight stable and major MTAs, including MTA259, MTA64, MTA66, MTA94, MTA110, MTA165, MTA180, and MTA164, were converted into cost-effective and efficient detection markers. This study provided valuable genetic resources and reliable molecular markers for wheat breeding programs.


Subject(s)
Phenotype , Polymorphism, Single Nucleotide , Triticum , Triticum/genetics , Triticum/growth & development , Genome-Wide Association Study , Quantitative Trait Loci , Alleles , Plant Breeding , Genome, Plant , Genetic Association Studies , Selection, Genetic , Genotype , Genetic Markers , Edible Grain/genetics , Edible Grain/growth & development
2.
Parasit Vectors ; 17(1): 222, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745242

ABSTRACT

BACKGROUND: Culex pipiens pallens is a well-known mosquito vector for several diseases. Deltamethrin, a commonly used pyrethroid insecticide, has been frequently applied to manage adult Cx. pipiens pallens. However, mosquitoes can develop resistance to these insecticides as a result of insecticide misuse and, therefore, it is crucial to identify novel methods to control insecticide resistance. The relationship between commensal bacteria and vector resistance has been recently recognized. Bacteriophages (= phages) are effective tools by which to control insect commensal bacteria, but there have as yet been no studies using phages on adult mosquitoes. In this study, we isolated an Aeromonas phage vB AhM-LH that specifically targets resistance-associated symbiotic bacteria in mosquitoes. We investigated the impact of Aeromonas phage vB AhM-LH in an abundance of Aeromonas hydrophila in the gut of Cx. pipiens pallens and its effect on the status of deltamethrin resistance. METHODS: Phages were isolated on double-layer agar plates and their biological properties analyzed. Phage morphology was observed by transmission electron microscopy (TEM) after negative staining. The phage was then introduced into the mosquito intestines via oral feeding. The inhibitory effect of Aeromonas phage vB AhM-LH on Aeromonas hydrophila in mosquito intestines was assessed through quantitative real-time PCR analysis. Deltamethrin resistance of mosquitoes was assessed using WHO bottle bioassays. RESULTS: An Aeromonas phage vB AhM-LH was isolated from sewage and identified as belonging to the Myoviridae family in the order Caudovirales using TEM. Based on biological characteristics analysis and in vitro antibacterial experiments, Aeromonas phage vB AhM-LH was observed to exhibit excellent stability and effective bactericidal activity. Sequencing revealed that the Aeromonas phage vB AhM-LH genome comprises 43,663 bp (51.6% CG content) with 81 predicted open reading frames. No integrase-related gene was detected in the vB AH-LH genome, which marked it as a potential biological antibacterial. Finally, we found that Aeromonas phage vB AhM-LH could significantly reduce deltamethrin resistance in Cx. pipiens pallens, in both the laboratory and field settings, by decreasing the abundance of Aeromonas hydrophila in their midgut. CONCLUSIONS: Our findings demonstrate that Aeromonas phage vB AhM-LH could effectively modulate commensal bacteria Aeromonas hydrophila in adult mosquitoes, thus representing a promising strategy to mitigate mosquito vector resistance.


Subject(s)
Aeromonas hydrophila , Bacteriophages , Culex , Insecticide Resistance , Nitriles , Pyrethrins , Animals , Aeromonas hydrophila/virology , Aeromonas hydrophila/drug effects , Culex/virology , Culex/microbiology , Bacteriophages/physiology , Bacteriophages/isolation & purification , Bacteriophages/genetics , Pyrethrins/pharmacology , Nitriles/pharmacology , Insecticides/pharmacology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Female
3.
Pest Manag Sci ; 80(4): 1991-2000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38092527

ABSTRACT

BACKGROUND: Mosquitoes are vectors of various diseases, posing significant health threats worldwide. Chemical pesticides, particularly pyrethroids like deltamethrin, are commonly used for mosquito control, but the emergence of resistant mosquito populations has become a concern. In the deltamethrin-resistant (DR) strain of Culex pipiens pallens, the highly expressed cytochrome P450 9 J34 (CYP9J34) gene is believed to play a role in resistance, yet the underlying mechanism remains unclear. RESULTS: Quantitative polymerase chain reaction with reverse transcription (qRT-PCR) analysis revealed that the expression of CYP9J34 was 14.6-fold higher in DR strains than in deltamethrin-susceptible (DS) strains. The recombinant production of CYP9J34 protein of Cx. pipiens pallens showed that the protein could directly metabolize deltamethrin, yielding the major metabolite 4'-OH deltamethrin. Through dual luciferase reporter assays and RNA interference, the transcription factor homeobox protein B-H2-like (B-H2) was identified to modulate the expression of the CYP9J34 gene, contributing to mosquito resistance to deltamethrin. CONCLUSIONS: Our findings demonstrate that the CYP9J34 protein could directly degrade deltamethrin, and the transcription factor B-H2 could regulate CYP9J34 expression, influencing the resistance of mosquitoes to deltamethrin. © 2023 Society of Chemical Industry.


Subject(s)
Culex , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Insecticides/metabolism , Complement Factor B/metabolism , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Pyrethrins/metabolism , Nitriles/pharmacology , Nitriles/metabolism , Culex/genetics , Culex/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Transcription Factors/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...