Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(13): 36680-36691, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36562968

ABSTRACT

Determining the spatiotemporal dynamics in land use and ecosystem service value (ESV) and understanding the trade-offs/synergy relationships between ecosystem services (ESs) are crucial for ecosystem management and achieving sustainable development in mining areas. However, existing research on ESV and ESs has not paid sufficient attention to the special coalfield in arid/semiarid areas. In this study, we investigated the Pingshuo mining area and used the standard equivalent factor to evaluate ESV variations resulting from the spatiotemporal changes of land use based on remote sensing and land use data (2000, 2010, and 2020). Simultaneously, the trade-offs/synergies between ESs were further explored using the ESs trade-offs/synergies degree (ESTD) model. We found that (1) the land use changed considerably in this area, which was mainly reflected in farmland decrease and built-up land increase by 3580.60 hm2 and by 5103.44 hm2, respectively, from 2000 to 2020. (2) ESV in our study area declined by 7116.53 × 104 RMB yuan over the investigated period. High ESV mainly appeared in the north/south of the study area, while the low ESV was concentrated in the middle and northeast/southeast of the mining area. (3) The interactions between paired ESs were mainly the synergies that generally appeared among eight ESs except soil conservation, while trade-offs mainly existed between soil conservation and other paired ESs in the study region. To achieve socio-economic and ecological benefits, the local government should take effective measures to improve the environment of the coalfield and reverse the falling tendency of ESV.


Subject(s)
Conservation of Natural Resources , Ecosystem , China , Soil , Sustainable Development
2.
Front Plant Sci ; 12: 631573, 2021.
Article in English | MEDLINE | ID: mdl-33719305

ABSTRACT

Real-time, nondestructive, and accurate estimation of plant water status is important to the precision irrigation of winter wheat. The objective of this study was to develop a method to estimate plant water content (PWC) by using canopy spectral proximal sensing data. Two experiments under different water stresses were conducted in 2014-2015 and 2015-2016. The PWC and canopy reflectance of winter wheat were collected at different growth stages (the jointing, booting, heading, flowering, and filling stages in 2015 and the jointing, booting, flowering, and filling stages in 2016). The performance of different spectral transformation approaches was further compared. Based on the optimal pretreatment, partial least squares regression (PLSR) and four combination methods [i.e., PLSR-stepwise regression (SR), PLSR-successive projections algorithm (SPA), PLSR-random frog (RF), and PLSR-uninformative variables elimination (UVE)] were used to extract the sensitive bands of PWC. The results showed that all transformed spectra were closely correlated to PWC. The PLSR models based on the first derivative transformation method exhibited the best performance (coefficient of determination in calibration, R 2 C = 0.96; root mean square error in calibration, RMSEC = 20.49%; ratio of performance to interquartile distance in calibration, RPIQC = 9.19; and coefficient of determination in validation, R 2 V = 0.86; root mean square error in validation, RMSEV = 46.27%; ratio of performance to interquartile distance in validation, RPIQV = 4.34). Among the combination models, the PLSR model established with the sensitive bands from PLSR-RF demonstrated a good performance for calibration and validation (R 2 C = 0.99, RMSEC = 11.53%, and RPIQC = 16.34; and R 2 V = 0.84, RMSEV = 44.40%, and RPIQV = 4.52, respectively). This study provides a theoretical basis and a reference for estimating PWC of winter wheat by using canopy spectral proximal sensing data.

3.
Sci Rep ; 10(1): 265, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937821

ABSTRACT

Monoculture and improper management may reduce soil fertility and deteriorate soil structure in Black soils (Mollisols) of Northeast China. The experiment was carried out from 2015 to 2016 in Black Soils comprising five cropping systems: continuous corn (CC), soybean-corn rotation (SC), corn-soybean rotation (CS), fallow-corn (FC), and fallow-soybean (FS). Our results showed that CS and FS treatments significantly increased mean weight diameter (MWD) and fractal dimension (D) in mechanical stability aggregates (MSAs), and increased MWD and geometric mean diameter (GMD) in water-stable aggregates (WSAs) compared with CC treatment. These two treatments were also significantly increased water-stable aggregates stability rate (WSAR), but decreased percentage of aggregates destruction (PAD) than CC treatment. Meanwhile, CS and FS treatments exhibited a higher carbon accumulation than CC treatment in bulk soils. Soil organic carbon (SOC) concentration in WSA0.106-0.25,WSA2-5 mm and WSA0.5-1 mm had a dominant effect on aggregate stability. Simutaneously, SOC in WSA>5 mm affected SOC concentration in bulk soils. As a whole, the CS and FS treatments can increase the percentage of macro-aggregates, enhance aggregate stability, as well as increase SOC concentration in bulk soils and all soil aggregate sizes.

4.
Sci Rep ; 7(1): 10460, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874761

ABSTRACT

Aeolian desertification is one of the serious environmental issues in North Shanxi Province. Accurately assessing aeolian desertification dynamics and its causes is essential to formulate an effective strategy for combating aeolian desertification. Here, we adopted remote sensing (RS) images from four periods (1975, 1990, 2000, and 2015) to classify the intensity of aeolian desertified land (ADL). Four intensity grades (i.e., light, moderate, severe, and extremely severe) were categorized based on a series of indices. Then, the RS images were further interpreted coupled with the local climate and socio-economic data to evaluate ADL and its driving force. Results showed that there were 3941.16, 5389.92, 7526.38, and 3752.74 km2 of ADL in the above 4 periods, accounting for 28.56%, 39.06%, 54.53%, and 27.19% of the total study area, respectively. ADL experienced three major development stages: slower expansion during 1975-1990 at a rate of 96.58 km2/year, rapid expansion during 1990-2000 of 213.65 km2/year, and a reversion during 2000-2015 with a net decrease of 251.58 km2/year. The ADL development in north Shanxi was a result of mutual interaction between natural factors and human activities. It is also noted that the human activities were identified as the dominant driving force.

5.
Environ Sci Pollut Res Int ; 24(20): 17166-17174, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28585015

ABSTRACT

Northwest Shanxi is located on the farming-pastoral ecotone of northern China, where aeolian desertification is one of the most serious environmental and socioeconomic issues. The remote sensing image and geostatistical approach were implemented to estimate aeolian desertified land (ADL) dynamic variations from 1975 to 2015. Results showed that the ADL covered 11,685.21 km2 (82.29%) of the study area in 2015, the majority of which was classified as a light or moderate degree. The area of ADL gradually expanded at an increasing rate of 87.37 km2 a-1 during the 1975-2000 periods. More specifically, the area of ADL has increased by 1259.23 km2 from 1975 to 1990 and by 924.96 km2 from 1990 to 2000, respectively. In contrast, spatial transfer of ADL areas has dwindled by 2365.85 km2 with a net decrease of 157.72 km2 a-1, and the mitigated areas of aeolian desertification were 10,602.24 km2 between 2000 and 2015. During the past 40 years, the gravity center of ADL migrated to southeast until 2000 and moved northwest in 2000-2015. From 1975 to 2000, the migration distance of severe ADL was the largest, migrated toward the northwest by 19.03 km in 1975-1990 and by 20.16 km in 1990-2000, respectively. From 2000 to 2015, the migration distance of light ADL was the largest, 27.54 km migrated to the northwest. Aeolian desertification rapidly expanded from 1975 to 2000 under the combination of climate change and intensive human activities. Since the year of 2000, ecological engineering strategy initiated by the governments has been the dominant contributor to the aeolian desertification severity reversal. Aeolian desertification prevention is a complicated process. Both the central and local government should play a critical role in the rehabilitation of ADL in the long term.


Subject(s)
Climate Change , Environment Design , Environmental Monitoring , China , Conservation of Natural Resources , Ecology , Humans
6.
PLoS One ; 12(1): e0167679, 2017.
Article in English | MEDLINE | ID: mdl-28060827

ABSTRACT

To extract the sensitive bands for estimating the winter wheat growth status and yields, field experiments were conducted. The crop variables including aboveground biomass (AGB), soil and plant analyzer development (SPAD) value, yield, and canopy spectra were determined. Statistical methods of correlation analysis, partial least squares (PLS), and stepwise multiple linear regression (SMLR) were used to extract sensitive bands and estimate the crop variables with calibration set. The predictive model based on the selected bands was tested with validation set. The results showed that the crop variables were significantly correlated with spectral reflectance. The major spectral regions were selected with the B-coefficient and variable importance on projection (VIP) parameter derived from the PLS analysis. The calibrated SMLR model based on the selected wavelengths demonstrated an excellent performance as the R2, TC, and RMSE were 0.634, 0.055, and 843.392 for yield; 0.671, 0.017, and 1.798 for SPAD; and 0.760, 0.081, and 1.164 for AGB. These models also performed accurately and robustly by using the field validation data set. It indicated that these wavelengths retained in models were important. The determined wavelengths for yield, SPAD, and AGB were 350, 410, 730, 1015, 1185 and 1245 nm; 355, 400, 515, 705, 935, 1090, and 1365 nm; and 470, 570, 895, 1170, 1285, and 1355 nm, respectively. This study illustrated that it was feasible to predict the crop variables by using the multivariate method. The step-by-step procedure to select the significant bands and optimize the prediction model of crop variables may serve as a valuable approach. The findings of this study may provide a theoretical and practical reference for rapidly and accurately monitoring the crop growth status and predicting the yield of winter wheat.


Subject(s)
Seasons , Triticum/growth & development , Biomass , Models, Statistical , Reproducibility of Results
7.
PLoS One ; 10(1): e115240, 2015.
Article in English | MEDLINE | ID: mdl-25559638

ABSTRACT

Determining the influence of soil environmental factors on degradation of Cry1Ac protein from Bt cotton residues is vital for assessing the ecological risks of this commercialized transgenic crop. In this study, the degradation of Cry1Ac protein in leaves and in buds of Bt cotton in soil was evaluated under different soil water content and temperature settings in the laboratory. An exponential model and a shift-log model were used to fit the degradation dynamics of Cry1Ac protein and estimate the DT50 and DT90 values. The results showed that Cry1Ac protein in the leaves and buds underwent rapid degradation in the early stage (before day 48), followed by a slow decline in the later stage under different soil water content and temperature. Cry1Ac protein degraded the most rapidly in the early stage at 35°C with 70% soil water holding capacity. The DT50 values were 12.29 d and 10.17 d and the DT90 values were 41.06 d and 33.96 d in the leaves and buds, respectively. Our findings indicated that the soil temperature was a major factor influencing the degradation of Cry1Ac protein from Bt cotton residues. Additionally, the relative higher temperature (25°C and 35°C) was found to be more conducive to degradation of Cry1Ac protein in the soil and the greater water content (100%WHC) retarded the process. These findings suggested that under appropriate soil temperature and water content, Cry1Ac protein from Bt cotton residues will not persist and accumulate in soil.


Subject(s)
Bacterial Proteins/metabolism , Endotoxins/metabolism , Gossypium/metabolism , Hemolysin Proteins/metabolism , Meristem/metabolism , Plant Leaves/metabolism , Temperature , Water/metabolism , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Endotoxins/genetics , Gossypium/genetics , Hemolysin Proteins/genetics , Meristem/genetics , Plant Leaves/genetics , Plants, Genetically Modified , Proteolysis , Soil
8.
PLoS One ; 9(1): e80989, 2014.
Article in English | MEDLINE | ID: mdl-24404124

ABSTRACT

In this study, relationships between normalized difference vegetation index (NDVI) and plant (winter wheat) nitrogen content (PNC) and between PNC and grain protein content (GPC) were investigated using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data at the different stages of winter wheat in Linfen (Shanxi, P. R. China). The anticipating model for GPC of winter wheat was also established by the approach of NDVI at the different stages of winter wheat. The results showed that the spectrum models of PNC passed F test. The NDVI4.14 regression effect of PNC model of irrigated winter wheat was the best, and that in dry land was NDVI4.30. The PNC of irrigated and dry land winter wheat were significantly (P<0.01) and positively correlated to GPC. Both of protein spectral anticipating model of irrigated and dry land winter wheat passed a significance test (P<0.01). Multiple anticipating models (MAM) were established by NDVI from two periods of irrigated and dry land winter wheat and PNC to link GPC anticipating model. The coefficient of determination R(2) (R) of MAM was greater than that of the other two single-factor models. The relative root mean square error (RRMSE) and relative error (RE) of MAM were lower than those of the other two single-factor models. Therefore, test effects of multiple proteins anticipating model were better than those of single-factor models. The application of multiple anticipating models for predication of protein content (PC) of irrigated and dry land winter wheat was more accurate and reliable. The regionalization analysis of GPC was performed using inverse distance weighted function of GIS, which is likely to provide the scientific basis for the reasonable winter wheat planting in Linfen city, China.


Subject(s)
Plant Proteins , Remote Sensing Technology , Triticum , China , Geography , Models, Theoretical , Nitrogen , Satellite Imagery , Seasons
9.
PLoS One ; 8(5): e63275, 2013.
Article in English | MEDLINE | ID: mdl-23658819

ABSTRACT

The soil microbial community in reclaimed mining areas is fundamental to vegetative establishment. However, how this community responds to different regeneration scenarios and fertilizer treatments is poorly understood. This research evaluated plant and soil microbial communities from different regeneration scenarios and different fertilizer treatments. Regeneration scenarios significantly influenced soil bacterial, archaeal, and fungal rDNA abundance. The ratios of fungi to bacteria or archaea were increased with fertilizer application. The diversity of both plants and microbes was lowest in Lotus corniculatus grasslands. Regeneration scenario, fertilizer treatment, and their interaction influenced soil microbial richness, diversity and evenness indices. Labile carbon pool 2 was a significant factor affected plant and microbe communities in July, suggesting that plants and microbes may be competing for nutrients. The higher ratios of positive to negative association were found in soil bacteria and total microbe than in archaea and fungi. Stronger clustering of microbial communities from the same regeneration scenario indicated that the vegetative composition of regeneration site may have a greater influence on soil microbial communities than fertilizer treatment.


Subject(s)
Ecological and Environmental Phenomena , Fertilizers , Mining , Soil Microbiology , Biodiversity , China , Plants/classification , Polymorphism, Restriction Fragment Length , Soil/chemistry
10.
Chemosphere ; 84(4): 519-26, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21458839

ABSTRACT

The chemical composition and physical conformation of natural organic matter (NOM) play a major role in regulating its capacity to retain hydrophobic organic compounds. Naphthalene and phenanthrene were used to study the correlations between sorption/desorption isotherm nonlinearity and compositional data obtained from quantitative (13)C solid-state DPMAS NMR spectroscopy for soil and peat organic matter with or without lipids. Sorption experiments were conducted using a batch equilibration method. Desorption experiments were carried out immediately following the sorption experiments by three successive decant-refill cycles. Hysteresis was observed in all samples. Nonlinear sorption behavior was increased by removal of lipids from the NOM. The hysteresis index, obtained from the ratio of the Freundlich exponents (N values) for the desorption and sorption isotherms, was lower in the lipid-extracted NOM samples than in the same samples without lipid extraction. The relationship between the extent of hysteresis and the characteristics of the (13)C DPMAS NMR spectra indicates that altering NOM composition through lipid extraction not only increased the proportion of aromatic-C content, but also increased sorption/desorption hysteresis. Our data also suggest that the hysteresis index is negatively related to aromaticity.


Subject(s)
Humic Substances , Lipids/chemistry , Naphthalenes/chemistry , Phenanthrenes/chemistry , Soil Pollutants/chemistry , Adsorption , Models, Chemical
12.
World J Gastroenterol ; 12(47): 7626-34, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17171791

ABSTRACT

AIM: To study the action of hepatitis virus infection-associated genes at transcription level during liver regeneration (LR). METHODS: Hepatitis virus infection-associated genes were obtained by collecting the data from databases and retrieving the correlated articles, and their expression changes in the regenerating rat liver were detected with the rat genome 230 2.0 array. RESULTS: Eighty-eight genes were found to be associated with liver regeneration. The number of genes initially and totally expressed during initial LR [0.5-4 h after partial hepatectomy (PH)], transition from G0 to G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and reorganization of structure-function (66-168 h after PH) was 37, 8, 48, 3 and 37, 26, 80, 57, respectively, indicating that the genes were mainly triggered at the early stage of LR (0.5-4 h after PH), and worked at different phases. These genes were classified into 5 types according to their expression similarity, namely 37 up-regulated, 9 predominantly up-regulated, 34 down-regulated, 6 predominantly down-regulated and 2 up/down-regulated genes. Their total up- and down-regulation frequencies were 359 and 149 during LR, indicating that the expression of most genes was enhanced, while the expression of a small number of genes was attenuated during LR. According to time relevance, they were classified into 12 groups (0.5 and 1 h, 2 and 4 h, 6 h, 8 and 12 h, 16 and 96 h, 18 and 24 h, 30 and 42 h, 36 and 48 h, 54 and 60 h, 66 and 72 h, 120 and 144 h, 168 h), demonstrating that the cellular physiological and biochemical activities during LR were fluctuated. According to expression changes of the genes, their expression patterns were classified into 23 types, suggesting that the cellular physiological and biochemical activities during LR were diverse and complicated. CONCLUSION: The anti-virus infection capacity of regenerating liver can be enhanced and 88 genes play an important role in LR.


Subject(s)
Hepatitis, Viral, Animal/genetics , Hepatitis, Viral, Animal/physiopathology , Liver Regeneration/genetics , Oligonucleotide Array Sequence Analysis , Animals , Female , Liver/physiology , Liver/virology , Male , Rats , Rats, Sprague-Dawley
13.
Chemosphere ; 48(9): 897-904, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12222784

ABSTRACT

Sorption and desorption are two important processes that influence the amount of pesticides retained by soils. However, the detailed sorption mechanisms as influenced by soil tillage management are unclear. This study examined the sorption and desorption characteristics of metolachlor [2-chloro-N-(2-ethyl-6-methyphenyl)-N-(2-methoxy-1-methylethyl)-acetamide] using the soil samples collected from the long-term conservation tillage (CnT) and conventional tillage (CT) research plots established in 1979 in Darlinton, SC. Humic acid (HA) and humin were extracted from the soils and used in the sorption experiments along with the whole soil samples. The sorption experiments were conducted using a batch-equilibration method. Three sequential desorption rinses were carried out following the sorption experiments. By comparing metolachlor sorption and desorption results we observed hysteresis for all soil samples and their organic matter fractions. Sorption nonlinearity (N) and hysteresis were dependent on the structure and composition of soil organic matter (SOM), e.g., Freundlich isotherm exponents (N) of HA and humin from CnT were higher than those of CT treatment, which may be related to high aromaticity of SOM fractions in CT treatment. Sorption capacity (K'f) was positively correlated with soil organic carbon (SOC) content. These results show that long-term tillage management can greatly affect metolachlor sorption and desorption behavior probably by qualitative differences in the structural characteristics of the humic substances.


Subject(s)
Acetamides/analysis , Agriculture , Herbicides/analysis , Soil Pollutants/analysis , Adsorption , Carbon
SELECTION OF CITATIONS
SEARCH DETAIL
...