Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Genomics ; 15(1): 261, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36527012

ABSTRACT

BACKGROUND: Hypoxia will trigger a series of immunosuppressive process in tumor microenvironment, leading to the progression in gastric cancer (GC). This research aims to establish a prognostic model made up of hypoxia-risk-related genes in GC. METHODS: Hypoxic genes were outlined via the protein-protein interaction network. And a prognostic model was developed using univariate cox analysis and lasso regression from data in TCGA. Two independent queues of GEO were used for validation. RESULTS: We set up a hypoxic model presented as an independent prognostic factor for GC. And a nomogram combined this model with clinical features can predict OS with great performance. Furthermore, DNA methylation, IHC and cell line analyses validated the expression of hypoxic genes in GC. CONCLUSIONS: In summary, we proposed and verified a hypoxia-risk-related model, which could reflect the immune microenvironment and predict prognosis in GC.


Subject(s)
Stomach Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Stomach Neoplasms/genetics , Prognosis , Hypoxia/genetics , DNA Methylation
2.
Langmuir ; 37(34): 10249-10258, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34415769

ABSTRACT

In the present research, magnetically recyclable polyphosphazene (PCTP)/Ag (MPCTP-Ag) nanoparticles are prepared by a green path, in which PCTP was used to modify Fe3O4 nanoparticles and provide nucleation sites for the reduction of Ag nanoparticles. The prepared MPCTP-Ag nanoparticles were characterized by TEM, SEM, EDS, BET, XRD, vibrating sample magnometry, XPS, and TGA analysis. The catalytic performances of the MPCTP-Ag nanoparticles for the degradation of 4-nitrophenol (4-NP), methylene blue (MB), methyl orange (MO), and their mixtures in the presence of NaBH4 were studied. The main factors affecting the catalytic performance, including temperature, reactant concentration, and catalyst dosage, were investigated. The results showed that the MPCTP-Ag nanoparticles exhibited excellent catalytic activity for the degradation of all three targeted organic contaminants (4-NP, MB, and MO). Moreover, the product retains its catalytic activity after being reused five times by magnetic separation. The results showed that MPCTP-Ag composite nanoparticles were efficient recyclable magnetic nanocatalysts with promising application in environment protection.

3.
J Colloid Interface Sci ; 463: 107-17, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26520817

ABSTRACT

α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres (HHMSs) were prepared by thermal transformation of nanosheet-assembled hierarchical hollow mesoporous microspheres of a precursor. The precursor was rapidly synthesized using FeCl3·6H2O as the iron source, ethanolamine (EA) as the alkali source, and ethylene glycol (EG) as the solvent by the microwave-assisted solvothermal method. The samples were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption isotherm. The effects of the microwave solvothermal temperature and EA amount on the morphology of the precursor were investigated. The as-prepared α-Fe2O3 HHMSs exhibit a good photocatalytic activity for the degradation of salicylic acid, and are promising for the application in wastewater treatment.

4.
Chemistry ; 21(27): 9868-76, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-25982303

ABSTRACT

A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery.


Subject(s)
Adenosine Triphosphate/chemistry , Calcium Compounds/chemistry , Calcium Phosphates/chemistry , Hemoglobins/chemistry , Lactates/chemistry , Proteins/chemistry , Animals , Cattle , Drug Delivery Systems , Ibuprofen/chemistry , Materials Testing , Microspheres , Porosity
5.
J Mater Chem B ; 3(9): 1823-1830, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-32262255

ABSTRACT

Calcium phosphate biomaterials are very promising for various biomedical applications owing to their excellent biocompatibility and biodegradability. Calcium phosphate nanostructured materials with a porous and hollow structure are excellent drug carriers due to their advantages such as high biocompatibility, large specific surface area, nanosized channels for drug loading and release, high drug loading capacity and pH-responsive drug release behavior. In this work, porous hollow microspheres of amorphous calcium phosphate have been successfully prepared by the microwave-assisted hydrothermal method using adenosine triphosphate disodium salt, CaCl2 and soybean lecithin in aqueous solution. This preparation method is facile, rapid, energy-saving and environment friendly. The effects of microwave hydrothermal temperature and concentrations of the reactants on the morphology and structure of the product were investigated. The as-prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The as-prepared porous hollow microspheres of amorphous calcium phosphate are efficient for drug loading and release, and the drug delivery system shows a pH-responsive drug release behavior and high ability to damage tumor cells. Thus, the as-prepared porous hollow microspheres of amorphous calcium phosphate are promising for the applications in various biomedical fields.

6.
J Colloid Interface Sci ; 443: 72-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25535849

ABSTRACT

Amorphous calcium phosphate (ACP) microspheres with a porous and hollow structure have been prepared using an aqueous solution containing CaCl2 as a calcium source, adenosine triphosphate disodium salt (Na2ATP) as a phosphorus source in the presence of a block copolymer methoxyl poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PLA) by the microwave-assisted hydrothermal method. The effects of microwave hydrothermal temperature and the concentrations of CaCl2 and Na2ATP on the crystal phase and morphology of the product are investigated. The as-prepared ACP porous hollow microspheres have a relatively high specific surface area of 232.9 m(2) g(-1) and an average pore size of 9.9 nm. A typical anticancer drug, docetaxel, is used to evaluate the drug loading ability and drug release behavior of ACP porous hollow microspheres in phosphate buffered saline (PBS) with different pH values of 4.5 and 7.4. The experiments reveal that the ACP porous hollow microspheres have a high drug loading capacity and favorable pH-responsive drug release property, and the ACP porous hollow microsphere drug delivery system shows a high ability to damage tumor cells. It is expected that the as-prepared ACP porous hollow microspheres are promising for the applications in various biomedical fields such as drug delivery.


Subject(s)
Calcium Phosphates/chemistry , Drug Delivery Systems , Microspheres , Microwaves , Polymers/chemistry , Adenosine Triphosphate/metabolism , Antineoplastic Agents/pharmacology , Cell Survival , Docetaxel , Drug Carriers , Drug Screening Assays, Antitumor , Humans , Microscopy, Electron, Scanning , Porosity , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Surface Properties , Taxoids/pharmacology , X-Ray Diffraction
7.
J Mater Chem B ; 2(48): 8576-8586, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-32262216

ABSTRACT

Magnesium phosphate biomaterial, as an alternative to well-known calcium phosphate biomaterials, is an excellent candidate for biomedical applications, owing to its outstanding biocompatibility and biodegradability. Herein, we report a simple strategy for the rapid synthesis of magnesium phosphate hydrate nanosheets (MPHSs) using the microwave-assisted hydrothermal method. This method is facile, rapid, surfactant-free and environmentally friendly. The product shows an excellent ability to promote osteoblast MC-3T3 adhesion and spreading, which indicates high biocompatibility. Moreover, the as-prepared MPHSs are explored for potential applications in the loading and release of the anticancer drug and protein adsorption, using docetaxel as a model anticancer drug and hemoglobin (Hb) as a model protein. The experiments indicate that the as-prepared MPHSs have a relatively high protein adsorption capacity and a high ability to damage tumor cells after loading docetaxel. Thus, the as-prepared MPHSs are promising for applications in various biomedical fields such as drug delivery and protein adsorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...