Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 24(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38203073

ABSTRACT

Conventional trajectory planning for lower limb assistive devices usually relies on a finite-state strategy, which pre-defines fixed trajectory types for specific gait events and activities. The advancement of deep learning enables walking assistive devices to better adapt to varied terrains for diverse users by learning movement patterns from gait data. Using a self-attention mechanism, a temporal deep learning model is developed in this study to continuously generate lower limb joint angle trajectories for an ankle and knee across various activities. Additional analyses, including using Fast Fourier Transform and paired t-tests, are conducted to demonstrate the benefits of the proposed attention model architecture over the existing methods. Transfer learning has also been performed to prove the importance of data diversity. Under a 10-fold leave-one-out testing scheme, the observed attention model errors are 11.50% (±2.37%) and 9.31% (±1.56%) NRMSE for ankle and knee angle estimation, respectively, which are small in comparison to other studies. Statistical analysis using the paired t-test reveals that the proposed attention model appears superior to the baseline model in terms of reduced prediction error. The attention model also produces smoother outputs, which is crucial for safety and comfort. Transfer learning has been shown to effectively reduce model errors and noise, showing the importance of including diverse datasets. The suggested joint angle trajectory generator has the potential to seamlessly switch between different locomotion tasks, thereby mitigating the problem of detecting activity transitions encountered by the traditional finite-state strategy. This data-driven trajectory generation method can also reduce the burden on personalization, as traditional devices rely on prosthetists to experimentally tune many parameters for individuals with diverse gait patterns.


Subject(s)
Deep Learning , Humans , Leg , Lower Extremity , Locomotion , Ankle Joint
2.
Front Bioeng Biotechnol ; 10: 1021505, 2022.
Article in English | MEDLINE | ID: mdl-36324889

ABSTRACT

Reliable estimation of desired motion trajectories plays a crucial part in the continuous control of lower extremity assistance devices such as prostheses and orthoses. Moreover, reliable estimation methods are also required to predict hard-to-measure biomechanical quantities (e.g., joint contact moment/force) for use in sports injury science. Recognising that human locomotion is an inherently time-sequential and limb-synergetic behaviour, this study investigates models and learning algorithms for predicting the motion of a subject's leg from the motion of complementary limbs. The novel deep learning model architectures proposed are based on the Long Short-Term Memory approach with the addition of an attention mechanism. A dataset comprising Inertial Measurement Unit signals from 21 subjects traversing varied terrains was used, including stair ascent/descent, ramp ascent/descent, stopped, level-ground walking and the transitions between these conditions. Fourier Analysis is deployed to evaluate the model robustness, in addition to assessing time-based prediction errors. The experiment on three unseen test participants suggests that the branched neural network structure is preferred to tackle the multioutput problem, and the inclusion of an attention mechanism demonstrates improved performance in terms of accuracy, robustness and network size. An experimental comparison found that 57% of the model parameters were not needed after adding attention layers meanwhile the prediction error is lower than the LSTM model without attention mechanism. The attention model has errors of 9.06% and 7.64% (normalised root mean square error) for ankle and hip acceleration prediction respectively. Also, less high-frequency noise is present in the attention model predictions. We conclude that the internal structure of the proposed deep learning model is justified, principally the benefit of using an attention mechanism. Experimental results for biomechanical motion estimation are obtained, showing greater accuracy than only with LSTM. The trained attention model can be used throughout despite transitioning between terrain types. Such a model will be useful in, for example, the control of lower-limb prostheses, instead of the need to identify and switch between different trajectory generators for different walking modes.

SELECTION OF CITATIONS
SEARCH DETAIL
...