Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav ; 13(2): e2876, 2023 02.
Article in English | MEDLINE | ID: mdl-36621889

ABSTRACT

OBJECTIVE: Attractin (ATRN) is a widely expressed member of the cell adhesion and guidance protein family in humans that is closely related to cellular immunity and neurodevelopment. However, while previous studies in our laboratory have confirmed the effect of ATRN mutations on long-term memory, its specific role and the molecular mechanism by which it influences spatial cognition are poorly understood. METHODS: This study aimed to examine the effect of ATRN mutations on working memory in water maze with a novel ATRN-mutant rat generated by the CRISPR/Cas9 system; the mutation involved the substitution of the 505th amino acid, glycine (G), with cysteine (C), namely, a mutation from GGC to TGC. The changes in myelin basic protein (MBP) expression in rats were also analyzed with the western blot. RESULTS: The ATRN-G505C(KI/KI) rats exhibited significant increases in the required latency and distance traveled to locate the escape platform in a Morris water maze test of working memory. In addition, the expression of MBP was reduced in ATRN-mutant rats, as shown in the western blot analysis. CONCLUSION: Our results indicate that ATRN gene mutations may directly lead to the impairment of working memory in the water maze; this impairment may be due to the inhibition of MBP expression, which in turn affects the spatial cognition.


Subject(s)
Memory, Short-Term , Animals , Humans , Rats , Maze Learning , Mutation
2.
Neurochem Int ; 50(2): 379-85, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17074421

ABSTRACT

In this study, we first developed an in vitro model of neuron with mitochondrial dysfunction, based on sodium azide (NaN(3))-induced inhibition of cytochrome c oxidase (complex IV) that is reduced in post-mortem AD brains, and then investigated the role of Trx expression in response of neurons with mitochondrial dysfunction to oxidative stress. We found that neurons treated with sub-threshold concentration (8mM) of NaN(3) have mitochondrial dysfunction and that thioredoxin (Trx) mRNA and protein level decreased in neurons with mitochondrial dysfunction though no significant change in the viability. When exposed to extracellular H(2)O(2), neurons with mitochondrial dysfunction were significantly more vulnerable than control neurons. Trx mRNA and protein levels in neurons with mitochondrial dysfunction decreased in a dose- and time-dependent manner (mRNA: 25-150 microM H(2)O(2) for 1h and 50 microM H(2)O(2) for 1-3h; protein: 25-150 microM H(2)O(2) for 1h and 50 microM H(2)O(2) for 1-4h), while those in control neurons had no significant changes (50-250 microM H(2)O(2) for 1h). The data implied that vulnerability of neurons with mitochondrial dysfunction to oxidative stress is associated with down-regulation of thioredoxin.


Subject(s)
Down-Regulation/physiology , Mitochondria/physiology , Neurons/physiology , Oxidative Stress/physiology , Thioredoxins/biosynthesis , Animals , Blotting, Western , Cells, Cultured , Dose-Response Relationship, Drug , Electron Transport Complex IV/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Female , Hydrogen Peroxide/pharmacology , Membrane Potentials/drug effects , Mice , Mice, Inbred ICR , Mitochondria/drug effects , RNA/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Sodium Azide/pharmacology , Tetrazolium Salts , Thiazoles , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...