Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Gynecol Obstet ; 309(1): 139-144, 2024 01.
Article in English | MEDLINE | ID: mdl-36602560

ABSTRACT

OBJECTIVE: To assess the efficacy of copy number variation sequencing (CNV-seq) and karyotyping for prenatal detection of chromosomal abnormalities in fetuses with increased nuchal translucency. METHODS: Amniotic fluid samples were extracted from 205 fetuses with increased nuchal translucency (NT ≥ 2.5 mm), diagnosed by ultrasound between gestational ages of 11 and 13 + 6 weeks. Karyotyping and CNV-seq were performed for detecting chromosomal abnormalities. RESULTS: There are 40 fetuses (19.51%) showing increased NT detected with chromosomal abnormalities in karyotyping, and trisomy 21 was found to be the most common abnormalities. There are 50 fetuses (24.39%) identified with chromosomal abnormalities by CNV-seq. The detection of the applied techniques indicated that CNV-seq revealed higher chromosomal aberrations. The risk of chromosomal abnormalities was significantly increased with NT thickening, from 13.64% in the NT group of 2.5-3.4 mm, 38.64% in the NT group of 3.5-4.4 mm, and to 51.72% in the NT group of over 4.5 mm (P < 0.05). The investigated cases with increased NT with presence of soft markers in ultrasound or high risk in non-invasive prenatal testing presented chromosomal abnormalities in higher rates, comparing with those with isolated NT or low risk (P < 0.05). CONCLUSION: The results indicated that the risk of chromosomal abnormalities was associated with the NT thickness, detected by karyotype or CNV-seq. The combination application of two analysis was efficient to reveal the possible genetic defects in prenatal diagnosis. The finding suggested that the detection should be considered with ultrasonographic soft markers, and the NT thickness of 2.5-3.4 mm could be a critical value for detecting chromosomal abnormalities to prevent the occurrence of missed diagnosis.


Subject(s)
DNA Copy Number Variations , Nuchal Translucency Measurement , Pregnancy , Female , Humans , Retrospective Studies , Nuchal Translucency Measurement/methods , Chromosome Aberrations , Fetus , Ultrasonography, Prenatal
2.
J Adv Res ; 57: 163-180, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37182685

ABSTRACT

INTRODUCTION: Human papillomavirus (HPV) integration can induce gene expression dysregulation by destroying higher-order chromatin structure in cervical cancer. OBJECTIVES: We established a 13q22 site-specific HPV16 gene knock-in cell model to interrogate the changes in chromatin structure at the initial stages of host cell malignant transformation. METHODS: We designed a CRISPR-Cas9 system with sgRNA targeting 13q22 site and constructed the HPV16 gene donor. Cells were cotransfected, screened, and fluorescence sorted. The whole genome sequencing (WGS) was used to confirm the precise HPV16 gene integration site. Western blot and qRT-PCR were used to measure gene expression. In vitro and in vivo analysis were performed to estimate the tumorigenic potential of the HPV16 knock-in cell model. Combined Hi-C, chromatin immunoprecipitation and RNA sequencing analyses revealed correlations between chromatin structure and gene expression. We performed a coimmunoprecipitation assay with anti-PIBF1 antibody to identify endogenous interacting proteins. In vivo analysis was used to determine the role of PIBF1 in the tumor growth of cervical cancer cells. RESULTS: We successfully established a 13q22 site-specific HPV16 gene knock-in cell model. We found that HPV integration promoted cell proliferation, invasion and stratified growth in vitro, and monoclonal proliferation in vivo. HPV integration divided the affected topologically associated domain (TAD) into two smaller domains, and the progesterone-induced blocking factor 1 (PIBF1) gene near the integration site was upregulated, although PIBF1 was not enriched at the domain boundary by CUT-Tag signal analysis. Moreover, PIBF1 was found to interact with the cohesin complex off chromatin to reduce contact domain formation by disrupting the cohesin ring-shaped structure, causing dysregulation of tumorigenesis-related genes. Xenograft experiments determined the role of PIBF1 in the proliferation in cervical cancer cells. CONCLUSION: We highlight that PIBF1, a potential chromatin structure regulatory protein, is activated by HPV integration, which provides new insights into HPV integration-driven cervical carcinogenesis.


Subject(s)
Papillomavirus Infections , Pregnancy Proteins , Uterine Cervical Neoplasms , Humans , Female , Chromatin/genetics , Human papillomavirus 16/genetics , Uterine Cervical Neoplasms/genetics , Papillomavirus Infections/genetics , RNA, Guide, CRISPR-Cas Systems , Carcinogenesis , Epithelial Cells , Human Papillomavirus Viruses , Gene Expression , Suppressor Factors, Immunologic
3.
Neurocrit Care ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833519

ABSTRACT

BACKGROUND: The relationship of fibrin(ogen) degradation products (FDPs) and potassium with the functional outcomes of patients with aneurysmal subarachnoid hemorrhage (aSAH) is still uncertain. This study aims to evaluate the predictive value of a novel combination biomarker, the FDP-to-potassium ratio (FPR), for poor functional outcomes in patients with aSAH. METHODS: A total of 425 consecutive patients with aSAH at a single center were retrospectively enrolled in our study. An unfavorable outcome was defined as a modified Rankin Scale (mRS) score of 3-6 at 3 months after discharge. Univariate analysis and multivariable logistic regression were performed for baseline information and laboratory parameters recorded at admission. In addition, the receiver operating characteristic curve was plotted, and propensity score matching was performed based on the FPR. RESULTS: On the basis of mRS grade, 301 patients were classified as having favorable outcomes, and 124 patients were assessed as having unfavorable outcomes. FPR levels were significantly correlated with mRS grade (r[Spearman] = 0.410; P < 0.001). Multivariate logistic regression analysis showed that age (odds ratio [OR] 1.043, 95% confidence interval [CI] 1.016-1.071; P = 0.002), white blood cell count (OR 1.150, 95% CI 1.044-1.267; P = 0.005), potassium (OR 0.526, 95% CI 0.291-0.949; P = 0.033), World Federation of Neurosurgical Societies grade (OR 1.276, 95% CI 1.055-1.544; P = 0.012), and FPR (OR 1.219, 95% CI 1.102-1.349; P < 0.001) at admission were independently associated with poor functional outcomes. The DeLong test showed that the area under the receiver operating characteristic curve of FPR was higher than that of age, white blood cell count, potassium, World Federation of Neurosurgical Societies grade, or FDP alone, indicating that FPR had better predictive potential than these other variables. After 1:1 propensity score matching (FPR ≥ 1.45 vs. FPR < 1.45), the rate of poor prognosis was still significantly increased in the high-FPR group (48/121 [39.7%] vs. 16/121 [13.2%], P < 0.001). CONCLUSIONS: Fibrin(ogen) degradation product-to-potassium ratio is an independent predictor of poor outcomes for patients with aSAH and may be a promising tool for clinicians to evaluate patients' functional prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...