Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ESC Heart Fail ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656659

ABSTRACT

AIMS: Atrial fibrillation (AF) is the most common arrhythmia. Heart failure (HF) is a disease caused by heart dysfunction. The prevalence of AF and HF were progressively increasing over time. The co-existence of AF and HF presents a significant therapeutic challenge. In order to provide new ideas for the diagnosis of AF and HF, it is necessary to carry out biomarker related studies. METHODS AND RESULTS: The training set and validation set data of AF and HF patient samples were downloaded from the GEO database, 'limma' was used to compare the differences in gene expression levels between the disease group and the normal group to screen for differentially expressed genes (DEGs). Weighted correlation network analysis (WGCNA) identified the modules with the highest positive correlation with AF and HF. Functional enrichment and PPI network construction of key genes were carried out. Biomarkers were screened by machine learning. The infiltration of immune cells in AF and HF groups was evaluated by R-packet 'CIBERSORT'. The miRNA network was constructed and potential therapeutic agents for biomarker genes were predicted through the drugbank database. Through WGCNA analysis, it was found that the modules most positively correlated with AF and HF were MEturquoise (r = 0.21, P value = 0.09) and MEbrown (r = 0.62, P value = 8e-12), respectively. We screened 25 genes that were highly correlated with both AF and HF. Lasso regression analysis results showed 7 and 20 core genes in AF and HF groups, respectively. The top 20 important genes in AF and HF groups were obtained as core genes by RF model analysis. Four biomarkers were obtained after the intersection of core genes in four groups, namely, GLUL, NCF2, S100A12, and SRGN. The diagnostic efficacy of four genes in AF validation sets was good (AUC: GLUL 0.76, NCF2 0.64, S100A12 0.68, and SRGN 0.76), as well as in the HF validation set (AUC: GLUL 0.76, NCF2 0.84, S100A12 0.92, and SRGN 0.68). The highest correlation with neutrophils was observed for GLUL, NCF2, and S100A12, while SRGN exhibited the strongest correlation with T cells CD4 memory resting in the AF group. GLUL, NCF2, S100A12, and SRGN were most associated with neutrophils in the HF group. A total of 101 miRNAs were predicted by four genes, and GLUL, NCF2, and S100A12 predicted a total of 10 potential therapeutic agents. CONCLUSIONS: We identified four biological markers that are highly correlated with AF and HF, namely, GLUL, NCF2, S100A12, and SRGN. Our findings provide theoretical basis for the clinical diagnosis and treatment of AF and HF.

2.
Front Mol Neurosci ; 15: 1026530, 2022.
Article in English | MEDLINE | ID: mdl-36385762

ABSTRACT

Wiedemann-Rautenstrauch syndrome (WDRTS) is an extremely rare autosomal recessive neonatal disorder. Currently, over 50 cases with variable phenotypes of WDRTS have been reported. In our cohort of prenatal and postnatal growth retardation, a female proband was found to have general growth retardation, neurocutaneous syndrome, and anemia. Karyotype test and array-CGH detected no obvious chromosomal aberrations. Trio-based whole-exome sequencing (Trio-WES) identified bi-allelic compound mutations in the coding sequence (CDS) of POLR3A gene (c.3342C > T, p.Ser1114 = and c.3718G > A, p.Gly1240Ser). For the mild anemia phenotype, the underlying causal genetic factors could be attributed to the compound heterozygous mutations in FANCA gene (c.2832dup, p.Ala945CysfsTer6 and c.1902 T > G, p.Asp634Glu). Mini-gene reporter assays revealed that the synonymous variant of POLR3A and the missense variant of FANCA could affect pre-mRNA splicing of each gene. For POLR3A, the synonymous mutation (c.3342C > T, p.Ser1114=) generated three types of aberrant isoforms. Therefore, the female patient was finally diagnosed as WDRTS caused by POLR3A. For FANCA, the missense variant (c.1902 T > G, p.Asp634Glu) disrupted the normal splicing between exon 21 and 22, and produced two types of abnormal isoforms, one carrying the 1902G and the other spliced between exon 21 and 23 to exclude exon 22. Network analysis showed that POLR3A and FANCA could be STRINGed, indicating both proteins might collaborate for some unknown functions. Current investigation would broaden the knowledge for clinicians and genetic counselors and remind them to interpret those synonymous or predicted "benign" variants more carefully.

3.
Front Genet ; 13: 840577, 2022.
Article in English | MEDLINE | ID: mdl-35432459

ABSTRACT

Background: Neurodevelopmental disorder with dysmorphic facies and distal skeletal anomalies (NEDDFSA) is a rare syndromic disorder characterized by global neurodevelopmental delay, early-onset hypotonia, poor overall growth, poor speech/language ability, and additional common phenotypes such as eye anomalies, joint hypermobility, and skeletal anomalies of the hands and feet. NEDDFSA is caused by heterozygous pathogenic variants in the ZMIZ1 gene on chromosome 10q22.3 with autosomal dominant (AD) mode of inheritance. All the 32 reported cases with variants in ZMIZ1 gene had a genetic background in Caucasian, Hispanic, North African, and Southeastern Asian. Until now, there are no reports of Chinese patients with ZMIZ1 pathogenic variants. Methods: A 5-year-old girl was found to have the characteristic phenotypes of NEDDFSA. Array-Comparative Genomic Hybridization (array-CGH) and whole exome sequencing (WES) were applied for the trio of this female patient. Sanger sequencing was used to verify the selected variants. A comprehensive molecular analysis was carried out by protein structure prediction, evolutionary conservation, motif scanning, tissue-specific expression, and protein interaction network to elucidate pathogenicity of the identified ZMIZ1 variants. Results: The karyotype was 46, XX with no micro-chromosomal abnormalities identified by array-CGH. There were 20 variants detected in the female patient by WES. A de novo heterozygous missense variant (c.2330G > A, p.Gly777Glu, G777E) was identified in the exon 20 of ZMIZ1. No variants of ZMIZ1 were identified in the non-consanguineous parents and her healthy elder sister. It was predicted that G777E was pathogenic and detrimental to the spatial conformation of the MIZ/SP-RING zinc finger domain of ZMIZ1. Conclusion: Thus far, only four scientific articles reported deleterious variants in ZMIZ1 and most of the cases were from Western countries. This is the first report about a Chinese patient with ZMIZ1 variant. It will broaden the current knowledge of ZMIZ1 variants and variable clinical presentations for clinicians and genetic counselors.

4.
Biosens Bioelectron ; 69: 174-8, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25727033

ABSTRACT

The detection of ultralow concentrations of mercury is a currently significant challenge. Here, a novel strategy is proposed: the colorimetric detection of Hg(2+) based on the aggregation of gold nanoparticles (AuNPs) driven by a cationic polymer. In this three-component system, DNA combines electrostatically with phthalic diglycol diacrylate (PDDA) in a solution of AuNPs. In the presence of Hg(2+), thymine (T)-Hg(2+)-T induced hairpin turns are formed in the DNA strands, which then do not interact with PDDA, enabling the freed PDDA to subsequently facilitate aggregation of the AuNPs. Thus, according to the change in color from wine-red to blue-purple upon AuNPs aggregation, a colorimetric sensor is established to detect Hg(2+). Under optimal conditions, the color change is clearly seen with the naked eye. A linear range of 0.25-500nM was obtained by absorption spectroscopy with a detection limit of approximately 0.15nM. Additionally, the proposed method shows high selectivity toward Hg(2+) in the presence of other heavy metal ions. Real sample analysis was evaluated with the use of lake water and the results suggest good potential for practical application.


Subject(s)
Colorimetry/instrumentation , DNA/chemistry , Mercury/analysis , Polyethylenes/chemistry , Polymers/chemistry , Quaternary Ammonium Compounds/chemistry , Water Pollutants, Chemical/analysis , Cations , Environmental Monitoring/instrumentation , Equipment Design , Equipment Failure Analysis , Gold/chemistry , Mercury/chemistry , Metal Nanoparticles/chemistry , Reproducibility of Results , Sensitivity and Specificity , Water Pollutants, Chemical/chemistry
5.
Neurosci Lett ; 433(3): 274-8, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18280651

ABSTRACT

Nociceptin/orphanin FQ (N/OFQ) possesses modulatory effects on somatic noxious signals in spinal cord, while the potential role in visceral nociception remains elusive. We designed this study to investigate the hypothesis that cardiac nociceptive signals from acute ischemic myocardium to the spinal cord are transmitted or modulated by mechanisms including N/OFQ. We examined the changes of N/OFQ and its mRNA in the dorsal root ganglia and spinal cord of upper thoracic segments innervating the heart of rats. Thoracic epidural anesthesia was performed to confirm neural mechanism underlying the changes. We observed that selective coronary artery occlusion significantly up-regulated N/OFQ and ppN/OFQ mRNA in the dorsal root ganglia and spinal cord. Thoracic epidural anesthesia abolished the changes in the expression of N/OFQ and its mRNA. The observations indicate that cardiac noxious neural afferent drive is responsible for the up-regulation of N/OFQ in the primary afferent neurons and intrinsic spinal neurons.


Subject(s)
Ganglia, Spinal/metabolism , Myocardial Ischemia/complications , Nociceptors/metabolism , Opioid Peptides/metabolism , Pain/metabolism , Spinal Cord/metabolism , Anesthesia, Epidural , Anesthetics/pharmacology , Animals , Autonomic Nervous System/drug effects , Autonomic Nervous System/metabolism , Autonomic Nervous System/physiopathology , Coronary Stenosis/complications , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Immunohistochemistry , Male , Neurons, Afferent/cytology , Neurons, Afferent/drug effects , Neurons, Afferent/metabolism , Nociceptors/drug effects , Opioid Peptides/genetics , Pain/etiology , Pain/physiopathology , Posterior Horn Cells/cytology , Posterior Horn Cells/drug effects , Posterior Horn Cells/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/cytology , Spinal Cord/drug effects , Thoracic Vertebrae , Up-Regulation/drug effects , Visceral Afferents/cytology , Visceral Afferents/drug effects , Visceral Afferents/metabolism , Nociceptin
SELECTION OF CITATIONS
SEARCH DETAIL
...