Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nano Lett ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012034

ABSTRACT

The interaction between light and moiré superlattices presents a platform for exploring unique light-matter phenomena. Tailoring these optical properties holds immense potential for advancing the utilization of moiré superlattices in photonics, optoelectronics, and valleytronics. However, the control of the optical polarization state in moiré superlattices, particularly in the presence of moiré effects, remains elusive. Here, we unveil the emergence of optical anisotropy in moiré superlattices by constructing twisted WSe2/WSe2/SiP heterostructures. We report a linear polarization degree of ∼70% for moiré excitons, attributed to the spatially nonuniform charge distribution, corroborated by first-principles calculations. Furthermore, we demonstrate the modulation of this linear polarization state via the application of a magnetic field, resulting in polarization angle rotation and a magnetic-field-dependent linear polarization degree, influenced by valley coherence and moiré potential effects. Our findings demonstrate an efficient strategy for tuning the optical polarization state of moiré superlattices using heterointerface engineering.

2.
Nano Lett ; 24(26): 8189-8197, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904278

ABSTRACT

IV-V two-dimensional materials have emerged as key contenders for polarization-sensitive and angle-resolved devices, given their inherent anisotropic physical properties. While these materials exhibit intriguing high-pressure quasi-particle behavior and phase transition, the evolution of quasi-particles and their interactions under external pressure remain elusive. Here, employing a diamond anvil cell and spectroscopic measurements coupled with first-principles calculations, we unveil rarely observed pressure-induced phonon-phonon coupling in layered SiP flakes. This coupling manifests as an anomalous phonon hardening behavior for the A1 mode within a broad wavenumber phonon softening region. Furthermore, we demonstrate the effective tuning of exciton emissions in SiP flakes under pressure, revealing a remarkable 63% enhancement in the degree of polarization (DOP) within the pressure range of 0-3.5 GPa. These findings contribute to our understanding of high-pressure phonon evolution in SiP materials and offer a strategic approach to manipulate the anisotropic performance of in-plane anisotropic 2D materials.

3.
Sci Total Environ ; 913: 169586, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160844

ABSTRACT

CO2 emissions from power plants are the dominant source of global CO2 emissions, thus in the context of global warming, accurate estimation of CO2 emissions from power plants is essential for the effective control of carbon emissions. Based on the XCO2 retrievals from the Orbiting Carbon Observatory 2 (OCO-2) and the Gaussian Plume Model (GPM), a series of studies have been carried out to estimate CO2 emission from power plants. However, the GPM is an ideal model, and there are a number of assumptions that need to be made when using this model, resulting in large uncertainties in the inverted emissions. Here, based on 6 cases of power plant plumes observed by the OCO-2 satellite over the Yangtze River Delta, China, we use an inline plume rise module coupled in the Community Multi-scale Air Quality model (CMAQ) to simulate the plumes and invert the emissions, and compare the simulated plumes and inverted emissions using the GPM model. We found that CO2 emissions can be significantly overestimated or underestimated based on the GPM simulations, and that the CMAQ inline plume simulation could significantly improve the estimates. However, the simulation bias in wind speed can significantly affect the inversion results. These results indicate that accurate meteorological field and plume simulations are critical for future inversion of point source emissions.

4.
Opt Lett ; 48(22): 5867-5870, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966739

ABSTRACT

Two-dimensional (2D) semiconductors featuring low-symmetry crystal structures hold an immense potential for the design of advanced optoelectronic devices, leveraging their inherent anisotropic attributes. While the synthesis techniques for transition metal dichalcogenides (TMDs) have matured, a promising avenue emerges: the induction of anisotropy within symmetric TMDs through interlayer van der Waals coupling engineering. Here, we unveil the creation of heterostructures (HSs) by stacking highly symmetric MoSe2 with low-symmetry ReS2, introducing artificial anisotropy into monolayer MoSe2. Through a meticulous analysis of angle-dependent photoluminescence (PL) spectra, we discern a remarkable anisotropic intensity ratio of approximately 1.34. Bolstering this observation, the angle-resolved Raman spectra provide unequivocal validation of the anisotropic optical properties inherent to MoSe2. This intriguing behavior can be attributed to the in-plane polarization of MoSe2, incited by the deliberate disruption of lattice symmetry within the monolayer MoSe2 structure. Collectively, our findings furnish a conceptual blueprint for engineering both isotropic and anisotropic HSs, thereby unlocking an expansive spectrum of applications in the realm of high-performance optoelectronic devices.

5.
ACS Appl Mater Interfaces ; 15(41): 48475-48484, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37796741

ABSTRACT

Moiré superlattices have emerged as a promising platform for investigating and designing optically generated excitonic properties. The electronic band structure of these systems can be qualitatively modulated by interactions between the top and bottom layers, leading to the emergence of new quantum phenomena. However, the inhomogeneities present in atomically thin bilayer moiré superlattices created by artificial stacking have hindered a deeper understanding of strongly correlated electron properties. In this work, we report the fabrication of homogeneous moiré superlattices with controllable twist angles using a 2L-WSe2/2L-WSe2 homostructure. By adding extra layers, we provide additional degrees of freedom to tune the optical properties of the moiré superlattices while mitigating the nonuniformity problem. The presence of an additional bottom layer acts as a buffer, reducing the inhomogeneity of the moiré superlattice, while the encapsulation effect of the additional top and bottom WSe2 monolayers further enhances the localized moiré excitons. Our observations of alternating circularly polarized photoluminescence confirm the existence of moiré excitons, and their characteristics were further confirmed by theoretical calculations. These findings provide a fundamental basis for studying moiré potential correlated quantum phenomena and pave the way for their application in quantum optical devices.

6.
Nano Lett ; 23(19): 8833-8841, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37726204

ABSTRACT

Moiré superlattices induced by twisted van der Waals (vdW) heterostructures or homostructures have recently gained significant attention due to their potential to generate exotic strong-correlation electronic and phonon phenomena. However, the lack of dynamic tuning for interlayer coupling of moiré superlattices hinders a thorough understanding and development of the moiré correlation state. Here, we present a dynamic tuning method for twisted WSe2/WSe2 homobilayers using a diamond anvil cell (DAC). We demonstrate the powerful tuning of interlayer coupling and observe an enhanced response to pressure for interlayer breathing modes and the rapid descent of indirect excitons in twisted WSe2/WSe2 homobilayers. Our findings indicate that the introduction of a moiré superlattice for WSe2 bilayers gives rise to hybridized excitons, which lead to the different pressure-evolution exciton behaviors compared to natural WSe2 bilayers. Our results provide a novel understanding of moiré physics and offer an effective method to tune interlayer coupling of moiré superlattices.

7.
Nanoscale ; 15(29): 12388-12397, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37455620

ABSTRACT

The investigation of in-plane two-dimensional (2D) anisotropic materials has garnered significant attention due to their exceptional electronic, optical, and mechanical characteristics. The anisotropic optical properties and angle-dependent photodetectors based on 2D anisotropic materials have been extensively studied. However, novel in-plane anisotropic materials still need to be explored to satisfy for distinct environments and devices. Here, we report the remarkable anisotropic behavior of excitons and demonstrate a unique linear-dichroism transition of absorption between ultraviolet and visible light in layered silicon phosphide (SiP) through the analysis of polarization photoluminescence (PL) and absorbance spectra. Its high absorption linear dichroism ratio of 1.16 at 388 nm, 1.15 at 532 nm, and 1.19 at 733 nm is revealed, suggesting the brilliant non-isotropic responses. The robust periodic variation of the A1 and A2 Raman modes in 2D SiP materials allows for the determination of their crystal orientation. Furthermore, the presence of indirect excitons with phonon sidebands in the temperature-dependent PL spectra exhibits non-monotonic energy shifts with increasing temperature, which is attributed to an enhanced electron-phonon interaction and thermal expansion. Our findings provide valuable insights into the fundamental physical properties of layered SiP and offer guidelines for designing polarization-sensitive photodetectors and angle-dependent devices based on 2D anisotropic materials.

8.
Light Sci Appl ; 12(1): 117, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173297

ABSTRACT

The stacking of twisted two-dimensional (2D) layered materials has led to the creation of moiré superlattices, which have become a new platform for the study of quantum optics. The strong coupling of moiré superlattices can result in flat minibands that boost electronic interactions and generate interesting strongly correlated states, including unconventional superconductivity, Mott insulating states, and moiré excitons. However, the impact of adjusting and localizing moiré excitons in Van der Waals heterostructures has yet to be explored experimentally. Here, we present experimental evidence of the localization-enhanced moiré excitons in the twisted WSe2/WS2/WSe2 heterotrilayer with type-II band alignments. At low temperatures, we observed multiple excitons splitting in the twisted WSe2/WS2/WSe2 heterotrilayer, which is manifested as multiple sharp emission lines, in stark contrast to the moiré excitonic behavior of the twisted WSe2/WS2 heterobilayer (which has a linewidth 4 times wider). This is due to the enhancement of the two moiré potentials in the twisted heterotrilayer, enabling highly localized moiré excitons at the interface. The confinement effect of moiré potential on moiré excitons is further demonstrated by changes in temperature, laser power, and valley polarization. Our findings offer a new approach for localizing moiré excitons in twist-angle heterostructures, which has the potential for the development of coherent quantum light emitters.

9.
Front Microbiol ; 14: 1142052, 2023.
Article in English | MEDLINE | ID: mdl-37089570

ABSTRACT

Some species of Carex can form tussocks, which are usually distributed in valleys and flood plains. The soil microbial community diversity and function of micro-habitats formed by tussocks are associated with plant diversity, and research on these associations can guide Carex tussock wetland restoration. In this study, we selected tussock wetlands dominated by Carex appendiculata, including natural wetlands (NW), artificially restored wetlands (ARW), and naturally restored wetlands (NRW), and investigated plant diversity. Soil samples were collected from the quadrats of each sample plot with the maximum (ma), median (me), and minimum (mi) plant Shannon index values, and high-throughput sequencing was used to analyze the bacterial community composition, diversity, and functions. The plant diversity indexes of neither ARW nor NRW significantly differed from that of NW, but the companion species in NRW were hygrophytes and mesophytes, in contrast to only hygrophytes serving as companion species in NW and ARW. The soil bacterial communities at the operational taxonomic unit level of the nine quadrats with different plant Shannon index values significantly (p < 0.01) differed. The relative abundances of the dominant phyla (Proteobacteria, Chloroflexi, and Bacteroidetes) and the dominant genera (Geobacter, Sideroxydans, and Clostridium except for unassigned genera) significantly (p < 0.05) differed under the different levels of plant diversity. The plant Shannon index, soil moisture content, total organic carbon, N, and P were significantly (p < 0.05 or p < 0.01) correlated with the bacterial Shannon index. The phylogenetic diversity of the bacterial community in NW was significantly (p < 0.0001) different from those in ARW and NRW, and that in ARW was also significantly (p < 0.05) different from that in NRW. The functional groups of bacterial communities associated with plant diversity. In the NWme, ARWme, and NRWme bacterial communities, the relative proportions of functional groups related to soil N cycle were higher, but those related to soil S and C cycles were lower. Considering the rehabilitation of both plant and microbial communities, the methods used for establishing the ARW are recommended for Carex tussock wetland restoration.

10.
Nanoscale ; 14(34): 12447-12454, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-35979926

ABSTRACT

Moiré superlattices offer a fascinating platform for designing the properties of optical excitons. The moiré pattern can generate an ordered exciton array in space, making it possible for topological excitons and quantum emitters. Recently, evidence of moiré excitons in the twisted heterostructures of TMDs has been widely reported. However, to date, the capture and investigation of moiré excitons in the twisted homostructure (T-HS) remain elusive. Here, we report the observation of moiré excitons in the WS2/WS2 T-HS with a twist angle of about 1.5°. The PL spectrum of the T-HS region shows many small peaks with nearly constant peak spacing, which is attributed to the reconstructed moiré potential generated by the reconstructed moiré pattern to confine the intralayer excitons, thereby forming an ordered moiré exciton array. Furthermore, we have studied the influence of temperature and laser power on the moiré excitons as well as the valley polarization of the moiré excitons. Our results provide a promising prospect for further exploration of artificial excitonic crystals and quantum emitters of TMD moiré patterns.

11.
Light Sci Appl ; 11(1): 166, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35650176

ABSTRACT

Recent advances in twisted van der Waals heterostructure superlattices have emerged as a powerful and attractive platform for exploring novel condensed matter physics due to the interplay between the moiré potential and Coulomb interactions. The moiré superlattices act as a periodic confinement potential in space to capture interlayer excitons (IXs), resulting in moiré exciton arrays, which provide opportunities for quantum emitters and many-body physics. The observation of moiré IXs in twisted transition-metal dichalcogenide (TMD) heterostructures has recently been widely reported. However, the capture and study of the moiré intralayer excitons based on TMD twisted homobilayer (T-HB) remain elusive. Here, we report the observation of moiré intralayer excitons in a WSe2/WSe2 T-HB with a small twist angle by measuring PL spectrum. The multiple split peaks with an energy range of 1.55-1.73 eV are different from that of the monolayer WSe2 exciton peaks. The split peaks were caused by the trapping of intralayer excitons via the moiré potential. The confinement effect of the moiré potential on the moiré intralayer excitons was further demonstrated by the changing of temperature, laser power, and valley polarization. Our findings provide a new avenue for exploring new correlated quantum phenomena and their applications.

12.
Opt Lett ; 47(22): 5861-5864, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-37219121

ABSTRACT

In this work, we investigate the polarization of the excitonics valley in MoS2-WS2 heterostructures using circular polarization-resolved photoluminescence. The valley polarization is the largest (≈28.45%) in the 1L-1L MoS2-WS2 heterostructure and the polarizability of AWS2 decreases as the number of WS2 layers increases. We further observed a redshift of exciton XMoS2- in MoS2-WS2 heterostructures with the increase of WS2 layers, which is attributed to the displacement of the MoS2 band edge, indicating the layer-sensitive optical properties of the MoS2-WS2 heterostructure. Our findings shed light on the understanding of exciton behavior in multilayer MoS2-WS2 heterostructures that may promote their potential applications in optoelectronic devices.

13.
Opt Express ; 29(3): 3567-3574, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33770953

ABSTRACT

Rhenium disulfide (ReS2) has emerged as a promising material for future optoelectric applications due to its extraordinary electrical, mechanical, and optoelectrical properties. However, the ReS2-based photodetectors are severely restricted by their slow response speed (>10 s). Here, we demonstrate a high-performance polarization-sensitive photodetector based on suspended ReS2. Such a transistor shows an n-type behavior with the mobility of about 14.1 cm2V-1s-1, an on/off ratio of 105, and a responsivity of 0.22 A/W. Benefitting from well-developed contact between Au and the ReS2 channel and reduced interface scattering from the Si substrate, the response time of the device can be as short as 83.5 and 325.3µs, respectively, which are three orders of magnitude faster than that reported earlier. Furthermore, the suspended ReS2 photodetector also has the capability to detect polarized light (Imax/Imin ≈ 1.4 at 532 nm) due to the robust in-plane anisotropy of the material. These findings offer an efficient approach for improving the performance of ReS2-based photodetectors.

14.
Opt Express ; 28(15): 22135-22143, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32752480

ABSTRACT

Two-dimensional van der Waals heterostructures (vdWHs) are drawing growing interest in the investigation of their valley polarization properties of localized excitons. However, most of the reported vdWHs were made by micro-mechanical peeling, limiting their large-scale production and practical applications. Furthermore, the circular polarization characters of localized excitons in WSe2/WS2 heterostructures remain elusive. Here, a bidirectional-flow physical vapor deposition technique was employed for the synthesis of the WSe2/WS2 type-II vertical heterostructures. The interfaces of such heterojunctions are sharp and clean, making the neutral excitons of the constituent layers quenched, which significantly highlights the luminescence of the local excitons. The circular polarization of localized excitons in this WSe2/WS2 heterostructure was demonstrated by circularly-polarized PL spectroscopy. The degree of the circular polarization of the localized excitons was determined as 7.17% for σ- detection and 4.78% for σ+ detection. Such local excitons play a critical role in a quantum emitter with enhanced spontaneous emission rate that could lead to the evolution of LEDs. Our observations provide valuable information for the exploration of intriguing excitonic physics and the applications of innovative local exciton devices.

15.
Opt Express ; 28(9): 13260-13268, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403803

ABSTRACT

Interlayer excitons (IX) are produced by the spatially separated electron-hole pairs due to the robust Coulomb interactions in van der Waals transition metal dichalcogenide (TMDC) heterostructures (HSS). IX is characterized by a larger binding energy, and its lifetime is orders of magnitude longer than that of the direct excitons, providing a significant platform for the manufacture of long-lived exciton devices and the exploration of exciton quantum gas. However, the studies are restricted to the single interlayer exciton, and the simultaneous capture and study of double IX remain challenging in the WSe2/WS2 HS. Here, we demonstrate the existence of double indirect IX in the WSe2/WS2 HS with the emission centers at 1.4585eV (∼25.9meV wide) and 1.4885 eV (∼14.4 meV wide) at cryogenic temperature. Interestingly, the intensities of the double IX emission peaks are almost equal, and the energy difference between them is in a good agreement with the cleavage value of the WS2 conduction band (CB). Additionally, diverse types of excitons in the individual materials were successfully observed in the PL spectra at 8 K. Such unique double IX features, in combination with excellent exciton identification, open up new opportunities for further investigations for new physical properties of TMDCs and explorations for the technological innovation of exciton devices.

16.
Nanomicro Lett ; 12(1): 93, 2020 Apr 18.
Article in English | MEDLINE | ID: mdl-34138100

ABSTRACT

Spintronics, exploiting the spin degree of electrons as the information vector, is an attractive field for implementing the beyond Complemetary metal-oxide-semiconductor (CMOS) devices. Recently, two-dimensional (2D) materials have been drawing tremendous attention in spintronics owing to their distinctive spin-dependent properties, such as the ultra-long spin relaxation time of graphene and the spin-valley locking of transition metal dichalcogenides. Moreover, the related heterostructures provide an unprecedented probability of combining the different characteristics via proximity effect, which could remedy the limitation of individual 2D materials. Hence, the proximity engineering has been growing extremely fast and has made significant achievements in the spin injection and manipulation. Nevertheless, there are still challenges toward practical application; for example, the mechanism of spin relaxation in 2D materials is unclear, and the high-efficiency spin gating is not yet achieved. In this review, we focus on 2D materials and related heterostructures to systematically summarize the progress of the spin injection, transport, manipulation, and application for information storage and processing. We also highlight the current challenges and future perspectives on the studies of spintronic devices based on 2D materials.

17.
Huan Jing Ke Xue ; 40(12): 5191-5201, 2019 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-31854589

ABSTRACT

This paper discusses the concentration characteristics of PM2.5, as well as its relationship with meteorological factors in autumn and winter (from September to the following February), from 2013 to 2018 in the Beijing-Tianjin-Hebei (BTH) region. The accuracy and uncertainty of the air quality forecast models NAQPMS(nested air quality prediction modeling system), CMAQ(community multiscale air quality modeling system), and CAMx (comprehensive air quality model with extensions) were analyzed based on the model-predicted and measured PM2.5 concentration in autumn and winter from 2015 to 2018. The accuracy of NAQPMS, CMAQ, and CAMx during typical heavy air pollution was also tested. Moreover, methods to improve the accuracy of the model forecast were discussed. The results showed that the mean concentrations of PM2.5 in the BTH region were 122, 98, 82, 99, and 65 µg·m-3 in the five autumn and winter periods, respectively. When the air quality index (AQI) exceeded 150 during each autumn and winter, it reached 229, 198, 210, 204, and 180 µg·m-3, respectively. There were 64 occurrences of heavy regional PM2.5 air pollution in autumn and winter from 2013 to 2018. The average duration was longest in the 2013 to 2014 period, and shortest in the 2017 to 2018 period. The peak concentration and average concentration of PM2.5 decreased year on year, except for the period from 2016 to 2017. In autumn and winter, PM2.5 concentration had a relatively close relationship with relative humidity, wind and sunshine duration, compared with a weak relationship with temperature and air pressure. Regional heavy air pollution always happened under the condition of low wind speed(less than 2 m·s-1),higher relative humidity(greater than 65%),and southwest and northeast wind direction. In addition, the heavy air pollution of PM2.5 in BTH in autumn and winter can be effectively forecasted by NAQPMS, CMAQ, and CAMx. The predicted and measured PM2.5 concentration showed a close relationship. The models performed well in forecasting Zhangjiakou, Chengde, and Qinhuangdao, but by contrast overestimated in Tangshan, Shijiazhuang, Baoding, Beijing, and Tianjin. The uncertainty of emission sources, measured and predicted meteorological data, and the atmospheric chemical reaction mechanism may be the main reasons for the overestimate.

18.
Nanoscale Res Lett ; 14(1): 274, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31414230

ABSTRACT

Bottom-up epitaxy has been widely applied for transition metal dichalcogenides (TMDCs) growth. However, this method usually leads to a high density of defects in the crystal, which limits its optoelectronic performance. Here, we show the effect of growth temperature on the defect formation, optical performance, and crystal stability in monolayer WSe2 via a combination of Raman and photoluminescence (PL) spectroscopy study. We found that the defect formation and distribution in monolayer WSe2 are closely related to the growth temperature. These defect density and distribution can be controlled by adjusting the growth temperature. Aging experiments directly demonstrate that these defects are an active center for the decomposition process. Instead, monolayer WSe2 grown under optimal conditions shows a strong and uniform emission dominated by neutral exciton at room temperature. The results provide an effective approach to optimize TMDCs growth.

19.
Huan Jing Ke Xue ; 35(2): 401-10, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-24812926

ABSTRACT

Based on the principles from the World Health Organization (WHO) and the United States, an analysis was conducted to study the form of 24-hour standard of particulate matter in China by methods of statistical regression, proportional rollback and controlling contrast maps, using the monitoring data of inhalable particulate matter (PM10) from 120 cities in China during year 2005 to 2012. It was found that for cities in China, when the annual arithmetic mean of PM10 was equal to the national standard, the non-exceedance rates of daily average PM10 in most cities were higher than 95.0% , and the average rate for all cities was 97.1%. The average non-exceedance rate was 96.3% for cities in North China and Northwest China, 96.6% for Northeast China, 97.2% for East China and Central South China, and 98.1% for Southwest China. When the 97th percentile was chosen as the form of 24-hour standard of particulate matter for China, the 24-hour standard had an equal controlling strength with the annual standard. The 24-hour standard will become the controlling standard when larger percentiles were chosen, otherwise the contrary. By considering together the statistical characteristics of PM10 level in China, the robustness of the percentiles and protection of human health, the 95th percentile was suitable as the preferred form of the 24-hour standard of PM10 and PM2.5 in China.


Subject(s)
Air Pollutants/standards , Environmental Monitoring/standards , Particulate Matter/standards , China , Cities
20.
Environ Pollut ; 184: 515-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24177434

ABSTRACT

Daily dietary and inhalation exposures to 16 parent polycyclic aromatic hydrocarbons (PAHs) and urinary excretion of 13 monohydroxy metabolites (OHPAHs) were monitored for 12 non-smoking university students in Beijing, China, during a controlled feeding experiment. The relationship between the urinary excretion of OHPAHs and the uptake of PAHs was investigated. The results suggest severe exposure of the subjects to PAHs via both dietary and inhalation pathways. Large increase of most urinary OHPAHs occurred after the ingestion of lamb kabob. Higher concentrations of OHPAHs were observed for female subjects, with the intakes of parent PAHs lower than those by males, likely due to the gender differences in metabolism. It appears that besides 1-PYR, metabolites of PHE could also be used as biomarkers to indicate the short-term dietary exposure to PAHs and urinary 3-BaA may serve as the biomarker for inhalation intake of high molecular weight PAHs.


Subject(s)
Diet/statistics & numerical data , Environmental Exposure/analysis , Polycyclic Aromatic Hydrocarbons/urine , Adult , Biomarkers/urine , China , Environmental Exposure/statistics & numerical data , Female , Food Contamination/analysis , Food Contamination/statistics & numerical data , Humans , Inhalation Exposure/analysis , Inhalation Exposure/statistics & numerical data , Male , Polycyclic Aromatic Hydrocarbons/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...