Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(36): 8244-8250, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37676025

ABSTRACT

The spin-allowed doublet emission of luminescent radicals has recently attracted significant attention. However, the spectral range of most reported luminescent radical emitters and their corresponding organic light-emitting diodes (OLEDs) is confined to the red and deep red regions, with only a few extending to the near-infrared region, specifically in the context of an emission peak exceeding 800 nm. Herein, a luminescent radical, 2-(4-(bis(2,4,6-trichlorophenyl)methyl radical)-3,5-dichlorophenyl)-4-phenyl-4H-thieno[3,2-b]indole (TTM-2PTI), with NIR emission peaking at 830 nm in toluene, was obtained through attaching a 4-phenyl-4H-thieno[3,2-b]indole group to the TTM radical core. An organic light-emitting diode (OLED) utilizing TTM-2PTI as the emitter exhibits electroluminescence (EL) emission peaking at 870 nm, which is the longest EL wavelength among the doublet-emissive near-infrared (NIR) OLEDs. This work provides a simple molecular design strategy to achieve NIR emission of radicals by leveraging the lower steric hindrance and electron-donating ability of thiophene.

2.
Nat Commun ; 13(1): 2744, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585063

ABSTRACT

Organic light-emitting diodes (OLEDs) must be engineered to circumvent the efficiency limit imposed by the 3:1 ratio of triplet to singlet exciton formation following electron-hole capture. Here we show the spin nature of luminescent radicals such as TTM-3PCz allows direct energy harvesting from both singlet and triplet excitons through energy transfer, with subsequent rapid and efficient light emission from the doublet excitons. This is demonstrated with a model Thermally-Activated Delayed Fluorescence (TADF) organic semiconductor, 4CzIPN, where reverse intersystem crossing from triplets is characteristically slow (50% emission by 1 µs). The radical:TADF combination shows much faster emission via the doublet channel (80% emission by 100 ns) than the comparable TADF-only system, and sustains higher electroluminescent efficiency with increasing current density than a radical-only device. By unlocking energy transfer channels between singlet, triplet and doublet excitons, further technology opportunities are enabled for optoelectronics using organic radicals.

SELECTION OF CITATIONS
SEARCH DETAIL
...