Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 205: 107236, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797358

ABSTRACT

The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.


Subject(s)
Antidepressive Agents , Depression , Ketamine , Mice, Inbred C57BL , Prefrontal Cortex , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Ketamine/pharmacology , Animals , Phosphorylation/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Male , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Depression/drug therapy , Depression/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Tyrosine/metabolism , Mice , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Synapses/drug effects , Synapses/metabolism , Behavior, Animal/drug effects
2.
Pharmacol Biochem Behav ; 204: 173156, 2021 05.
Article in English | MEDLINE | ID: mdl-33675839

ABSTRACT

The relationship between circadian rhythms and mood disorders has been established. Circadian dysregulations are believed to exacerbate the severity of mood disorders and vice versa. Although many studies on diurnal changes of clock genes in animal model of depression have been performed from the RNA level, only a few studies have been carried out from the protein level. In this study, we investigated the diurnal changes induced by chronic unpredictable stress (CUS) using free-running wheel test and Western Blotting (WB). Besides, we examined the depression-like behaviors of rats by sucrose preference test (SPT) and forced swim test (FST). We found that CUS induced significant reductions in the quantity of free-running wheel activity and rhythmic disruptions of clock proteins in hippocampus. Furthermore, we found that the amplitude of PER1 in CA1 was positively related to the severity of depression-like behaviors. These results suggest that CUS results in both changes in diurnal rhythms and in depression-like behaviors and that it is suggested that these changes are related.


Subject(s)
Circadian Rhythm , Depression/metabolism , Stress, Psychological/metabolism , Animals , Behavior, Animal , CA1 Region, Hippocampal/metabolism , CLOCK Proteins/metabolism , Disease Models, Animal , Hippocampus/metabolism , Male , Motor Activity , Period Circadian Proteins/metabolism , Physical Conditioning, Animal/methods , Rats , Rats, Sprague-Dawley , Sucrose/metabolism , Swimming
3.
Pharmacol Biochem Behav ; 203: 173130, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33601110

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor because of serious doubts regarding the data on melatonin levels. The authors used a melatonin ELISA kit that was not fit for purpose, resulting in data showing peak secretion of this hormone occurring in the middle of the light period, which does not make any physiological sense since melatonin is only produced during darkness.

4.
Pharmacol Biochem Behav ; 194: 172939, 2020 07.
Article in English | MEDLINE | ID: mdl-32437704

ABSTRACT

The relationship between circadian rhythms and mood disorders has been established, circadian dysregulations are believed to exacerbate the severity of mood disorders and vice versa. Although many studies on diurnal changes of clock genes in animal model of depression have been performed from the RNA level, only a few studies have been carried out from the protein level. In this study, we investigated the diurnal changes induced by chronic unpredictable stress (CUS) using various methods, including free-running wheel test, enzyme-linked immunosorbent assay (ELISA) and Western Blotting (WB). Besides, we examined the depression-like behaviors of rats by sucrose preference test (SPT) and forced swim test (FST). We found that CUS induced significant reductions in the quantity of free-running wheel activity and the amplitude of melatonin secretion rhythm. We also found that CUS induced rhythmic disruptions of clock proteins in hippocampus. Furthermore, we found that the amplitude of PER1 in CA1 was positively related to the severity of depression-like behaviors. These results suggest that stress results in both changes in circadian rhythms and in depression-like behaviors and that it is suggested that these changes are related.

SELECTION OF CITATIONS
SEARCH DETAIL
...