Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Trials ; 25(1): 320, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750599

ABSTRACT

BACKGROUND: Comorbid anxiety disorders and anxious distress are highly prevalent among individuals with major depressive disorder (MDD). The presence of the DSM-5 anxious distress specifier (ADS) has been associated with worse treatment outcomes and chronic disease course. Few studies have evaluated the therapeutic effects of High-definition transcranial direct current stimulation (HD-tDCS) on depressive and anxiety symptoms among MDD patients with ADS. The current randomized controlled trial aims to assess the efficacy of HD-tDCS as an augmentation therapy with antidepressants compared to sham-control in subjects of MDD with ADS. METHODS: MDD patients with ADS will be recruited and randomly assigned to the active HD-tDCS or sham HD-tDCS group. In both groups, patients will receive the active or sham intervention in addition to their pre-existing antidepressant therapy, for 2 weeks with 5 sessions per week, each lasting 30 min. The primary outcome measures will be the change of depressive symptoms, clinical response, and the remission rate as measured with the 17-item Hamilton Depression Rating Scale (HDRS-17) before and after the intervention and at the 2nd and 6th week after the completed intervention. Secondary outcome measures include anxiety symptoms, cognitive symptoms, disability assessment, and adverse effects. DISCUSSION: The HD-tDCS applied in this trial may have treatment effects on MDD with ADS and have minimal side effects. TRIAL REGISTRATION: The trial protocol is registered with www.chictr.org.cn under protocol registration number ChiCTR2300071726. Registered 23 May 2023.


Subject(s)
Depressive Disorder, Major , Randomized Controlled Trials as Topic , Transcranial Direct Current Stimulation , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/psychology , Depressive Disorder, Major/diagnosis , Transcranial Direct Current Stimulation/methods , Double-Blind Method , Treatment Outcome , Adult , Antidepressive Agents/therapeutic use , Middle Aged , Male , Female , Anxiety/therapy , Anxiety/psychology , Anxiety/diagnosis , Anxiety Disorders/therapy , Anxiety Disorders/psychology , Young Adult , Combined Modality Therapy , Adolescent
2.
Pharmacol Res ; 205: 107236, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797358

ABSTRACT

The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.


Subject(s)
Antidepressive Agents , Depression , Ketamine , Mice, Inbred C57BL , Prefrontal Cortex , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Ketamine/pharmacology , Animals , Phosphorylation/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Male , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Depression/drug therapy , Depression/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Tyrosine/metabolism , Mice , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Synapses/drug effects , Synapses/metabolism , Behavior, Animal/drug effects
3.
Trials ; 23(1): 1005, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510305

ABSTRACT

BACKGROUND: Insomnia is the most common sleep disorder. Repetitive transcranial magnetic stimulation (rTMS) is safe and effective for insomnia disorder (ID). Convergent evidence show that the medial prefrontal cortex (mPFC) may be involved in the regulation of sleep and awakening at the cortical level and may serve as a potential target of rTMS in the treatment of ID. The purpose of this clinical trial is to study the efficacy of mPFC-rTMS in the treatment ID and explore the neural mechanism using resting-state functional magnetic resonance imaging (fMRI). METHODS AND DESIGN: This will be a parallel-group randomized, patient- and assessor-blinded trial. The study will recruit 60 ID patients assigned to a real mPFC-rTMS group or a sham mPFC-rTMS group. The allocation ratio is 1:1, with 30 subjects in each group. Interventions will be administered five times per week over a 4-week period, with an 8-week follow-up period. All participants will undergo neuropsychological and fMRI evaluations. The primary outcome measure of this study is the change scores of the Pittsburgh Sleep Quality Index (PSQI). The secondary outcome measures include the fMRI measurements, the Hamilton Depression Scale (HAMD), the Hamilton Anxiety Scale (HAMA), a sleep diary, and a polysomnography. Assessment of all parameters will be performed at baseline, post-treatment, and during follow-up. DISCUSSION: It is expected that the study results will provide strong evidence of the effectiveness and the neural mechanism by which mPFC-rTMS improves sleep quality in ID patients. TRIAL REGISTRATION: Chinese Clinical Trials Register ChiCTR2100054154. Registered on 10 December 2021.


Subject(s)
Sleep Initiation and Maintenance Disorders , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/adverse effects , Transcranial Magnetic Stimulation/methods , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Sleep Initiation and Maintenance Disorders/therapy , Prefrontal Cortex , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Treatment Outcome , Randomized Controlled Trials as Topic
4.
Comput Math Methods Med ; 2021: 1959172, 2021.
Article in English | MEDLINE | ID: mdl-34938351

ABSTRACT

Schizophrenia (SCZ) is a common and complex psychiatric disease associated with hereditary and environmental risk factors. MicroRNAs (miRNAs or miRs) are small, noncoding RNA molecules that endogenously regulate gene expression. Single nucleotide polymorphisms (SNPs) in related miRNA genes are associated with susceptibility of the disorder. We wonder if the SNPs have influence on the effectiveness of modified electroconvulsive therapy (MECT) for SCZ. rs1625579 within miR-137, rs6577555 within miR-34, and rs2296616 within miR-107 were sequenced in 150 cases and 150 controls to check the potential association between the SNPs and SCZ. Our results showed that allele G in rs1625579 (p = 0.005, adjusted OR = 1.379, 95%CI = 1.108 - 1.634), allele A in rs6577555 (p = 0.014, adjusted OR = 1.246, 95%CI = 1.045 - 1.463), allele G in rs2296616 (p < 0.001, adjusted OR = 1.646, 95%CI = 1.374 - 1.879) are positively associated with the disorder risk. MECT courses did significantly decrease the level of the miRNAs, except for the variant of rs2296616 with the AA genotype. Schizophrenic phenotypes assessed by the positive and negative syndrome scale (PANSS) were improved after MECT, and there was no significant relevance observed between the effectiveness of MECT and the variants of these loci. Thus, our findings indicate that polymorphisms within the loci may be involved in the pathogenesis of SCZ, and MECT is effective and unbiased for patients harboring different genotypes of the loci.


Subject(s)
Electroconvulsive Therapy , MicroRNAs/genetics , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Schizophrenia/therapy , Adult , Case-Control Studies , Computational Biology , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Treatment Outcome
5.
Front Psychiatry ; 12: 710435, 2021.
Article in English | MEDLINE | ID: mdl-34566713

ABSTRACT

Excessive daytime sleepiness (EDS) is a significant public health concern, with obstructive sleep apnea (OSA) being a common cause, and a particular relationship exists with the severity of depression. A literature search on OSA, depression, and EDS was performed in PubMed. The chosen evidence was limited to human studies. Available evidence was systematically reviewed to ascertain the association of EDS with depression and OSA according to the general population and some specific population subgroups. In addition, effectiveness of continuous positive airway pressure (CPAP) was analyzed as a standard therapy for improving EDS and depression in patients with OSA. In the general population, patients with OSA, and some other subpopulations, the review contributed to: (1) delineating the prevalence of EDS; (2) substantiating the relationship of EDS and depression; (3) presenting the relationship between EDS and OSA; and (4) revealing that the duration of CPAP is crucial for its therapeutic effects in improving EDS and depressive symptoms in patients with OSA.

6.
Pharmacol Biochem Behav ; 204: 173156, 2021 05.
Article in English | MEDLINE | ID: mdl-33675839

ABSTRACT

The relationship between circadian rhythms and mood disorders has been established. Circadian dysregulations are believed to exacerbate the severity of mood disorders and vice versa. Although many studies on diurnal changes of clock genes in animal model of depression have been performed from the RNA level, only a few studies have been carried out from the protein level. In this study, we investigated the diurnal changes induced by chronic unpredictable stress (CUS) using free-running wheel test and Western Blotting (WB). Besides, we examined the depression-like behaviors of rats by sucrose preference test (SPT) and forced swim test (FST). We found that CUS induced significant reductions in the quantity of free-running wheel activity and rhythmic disruptions of clock proteins in hippocampus. Furthermore, we found that the amplitude of PER1 in CA1 was positively related to the severity of depression-like behaviors. These results suggest that CUS results in both changes in diurnal rhythms and in depression-like behaviors and that it is suggested that these changes are related.


Subject(s)
Circadian Rhythm , Depression/metabolism , Stress, Psychological/metabolism , Animals , Behavior, Animal , CA1 Region, Hippocampal/metabolism , CLOCK Proteins/metabolism , Disease Models, Animal , Hippocampus/metabolism , Male , Motor Activity , Period Circadian Proteins/metabolism , Physical Conditioning, Animal/methods , Rats , Rats, Sprague-Dawley , Sucrose/metabolism , Swimming
7.
Pharmacol Biochem Behav ; 203: 173130, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33601110

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor because of serious doubts regarding the data on melatonin levels. The authors used a melatonin ELISA kit that was not fit for purpose, resulting in data showing peak secretion of this hormone occurring in the middle of the light period, which does not make any physiological sense since melatonin is only produced during darkness.

8.
Pharmacol Biochem Behav ; 194: 172939, 2020 07.
Article in English | MEDLINE | ID: mdl-32437704

ABSTRACT

The relationship between circadian rhythms and mood disorders has been established, circadian dysregulations are believed to exacerbate the severity of mood disorders and vice versa. Although many studies on diurnal changes of clock genes in animal model of depression have been performed from the RNA level, only a few studies have been carried out from the protein level. In this study, we investigated the diurnal changes induced by chronic unpredictable stress (CUS) using various methods, including free-running wheel test, enzyme-linked immunosorbent assay (ELISA) and Western Blotting (WB). Besides, we examined the depression-like behaviors of rats by sucrose preference test (SPT) and forced swim test (FST). We found that CUS induced significant reductions in the quantity of free-running wheel activity and the amplitude of melatonin secretion rhythm. We also found that CUS induced rhythmic disruptions of clock proteins in hippocampus. Furthermore, we found that the amplitude of PER1 in CA1 was positively related to the severity of depression-like behaviors. These results suggest that stress results in both changes in circadian rhythms and in depression-like behaviors and that it is suggested that these changes are related.

SELECTION OF CITATIONS
SEARCH DETAIL
...