Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 11(7): uhae128, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966864

ABSTRACT

The grape genome is the basis for grape studies and breeding, and is also important for grape industries. In the last two decades, more than 44 grape genomes have been sequenced. Based on these genomes, researchers have made substantial progress in understanding the mechanism of biotic and abiotic resistance, berry quality formation, and breeding strategies. In addition, this work has provided essential data for future pangenome analyses. Apart from de novo assembled genomes, more than six whole-genome sequencing projects have provided datasets comprising almost 5000 accessions. Based on these datasets, researchers have explored the domestication and origins of the grape and clarified the gene flow that occurred during its dispersed history. Moreover, genome-wide association studies and other methods have been used to identify more than 900 genes related to resistance, quality, and developmental phases of grape. These findings have benefited grape studies and provide some basis for smart genomic selection breeding. Moreover, the grape genome has played a great role in grape studies and the grape industry, and the importance of genomics will increase sharply in the future.

2.
Sensors (Basel) ; 22(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36433292

ABSTRACT

Recent work has shown that deep neural networks are vulnerable to backdoor attacks. In comparison with the success of backdoor-attack methods, existing backdoor-defense methods face a lack of theoretical foundations and interpretable solutions. Most defense methods are based on experience with the characteristics of previous attacks, but fail to defend against new attacks. In this paper, we propose IBD, an interpretable backdoor-detection method via multivariate interactions. Using information theory techniques, IBD reveals how the backdoor works from the perspective of multivariate interactions of features. Based on the interpretable theorem, IBD enables defenders to detect backdoor models and poisoned examples without introducing additional information about the specific attack method. Experiments on widely used datasets and models show that IBD achieves a 78% increase in average in detection accuracy and an order-of-magnitude reduction in time cost compared with existing backdoor-detection methods.


Subject(s)
Inflammatory Bowel Diseases , Neural Networks, Computer , Humans , Information Theory , Inflammatory Bowel Diseases/diagnosis
3.
Sensors (Basel) ; 22(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36080965

ABSTRACT

The Internet has become the main channel of information communication, which contains a large amount of secret information. Although network communication provides a convenient channel for human communication, there is also a risk of information leakage. Traditional image steganography algorithms use manually crafted steganographic algorithms or custom models for steganography, while our approach uses ordinary OCR models for information embedding and extraction. Even if our OCR models for steganography are intercepted, it is difficult to find their relevance to steganography. We propose a novel steganography method for character-level text images based on adversarial attacks. We exploit the complexity and uniqueness of neural network boundaries and use neural networks as a tool for information embedding and extraction. We use an adversarial attack to embed the steganographic information into the character region of the image. To avoid detection by other OCR models, we optimize the generation of the adversarial samples and use a verification model to filter the generated steganographic images, which, in turn, ensures that the embedded information can only be recognized by our local model. The decoupling experiments show that the strategies we adopt to weaken the transferability can reduce the possibility of other OCR models recognizing the embedded information while ensuring the success rate of information embedding. Meanwhile, the perturbations we add to embed the information are acceptable. Finally, we explored the impact of different parameters on the algorithm with the potential of our steganography algorithm through parameter selection experiments. We also verify the effectiveness of our validation model to select the best steganographic images. The experiments show that our algorithm can achieve a 100% information embedding rate and more than 95% steganography success rate under the set condition of 3 samples per group. In addition, our embedded information can be hardly detected by other OCR models.


Subject(s)
Algorithms , Humans
4.
Sensors (Basel) ; 20(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947915

ABSTRACT

The insider threats have always been one of the most severe challenges to cybersecurity. It can lead to the destruction of the organisation's internal network system and information leakage, which seriously threaten the confidentiality, integrity and availability of data. To make matters worse, since the attacker has authorized access to the internal network, they can launch the attack from the inside and erase their attack trace, which makes it challenging to track and forensics. A blockchain traceability system for insider threats is proposed in this paper to mitigate the issue. First, this paper constructs an insider threat model of the internal network from a different perspective: insider attack forensics and prevent insider attacker from escaping. Then, we analyze why it is difficult to track attackers and obtain evidence when an insider threat has occurred. After that, the blockchain traceability system is designed in terms of data structure, transaction structure, block structure, consensus algorithm, data storage algorithm, and query algorithm, while using differential privacy to protect user privacy. We deployed this blockchain traceability system and conducted experiments, and the results show that it can achieve the goal of mitigating insider threats.

5.
Sensors (Basel) ; 20(13)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610606

ABSTRACT

Due to the openness of an Android system, many Internet of Things (IoT) devices are running the Android system and Android devices have become a common control terminal for IoT devices because of various sensors on them. With the popularity of IoT devices, malware on Android-based IoT devices is also increasing. People's lives and privacy security are threatened. To reduce such threat, many researchers have proposed new methods to detect Android malware. Currently, most malware detection products on the market are based on malware signatures, which have a fast detection speed and normally a low false alarm rate for known malware families. However, they cannot detect unknown malware and are easily evaded by malware that is confused or packaged. Many new solutions use syntactic features and machine learning techniques to classify Android malware. It has been known that analysis of the Function Call Graph (FCG) can capture behavioral features of malware well. This paper presents a new approach to classifying Android malware based on deep learning and OpCode-level FCG. The FCG is obtained through static analysis of Operation Code (OpCode), and the deep learning model we used is the Long Short-Term Memory (LSTM). We conducted experiments on a dataset with 1796 Android malware samples classified into two categories (obtained from Virusshare and AndroZoo) and 1000 benign Android apps. Our experimental results showed that our proposed approach with an accuracy of 97 % outperforms the state-of-the-art methods such as those proposed by Nikola et al. and Hou et al. (IJCAI-18) with the accuracy of 97 % and 91 % , respectively. The time consumption of our proposed approach is less than the other two methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...