Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Bone Rep ; 12: 100270, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32395570

ABSTRACT

Mechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging. We show that KYN is increased with aging in murine bone marrow mesenchymal stem cells (BMSCs). KYN reduces bone formation via modulating levels of CXCL12 and its receptors as well as histone deacetylase 3 (Hdac3). BMSCs responded to KYN by significantly decreasing mRNA expression levels of CXCL12 and its cognate receptors, CXCR4 and ACKR3, as well as downregulating osteogenic gene RUNX2 expression, resulting in a significant inhibition in BMSCs osteogenic differentiation. KYN's effects on these targets occur by increasing regulatory miRNAs that target osteogenesis, specifically miR29b-1-5p. Thus, KYN significantly upregulated the anti-osteogenic miRNA miR29b-1-5p in BMSCs, mimicking the up-regulation of miR-29b-1-5p in human and murine BMSCs with age. Direct inhibition of miR29b-1-5p by antagomirs rescued CXCL12 protein levels downregulated by KYN, while a miR29b-1-5p mimic further decreased CXCL12 levels. KYN also significantly downregulated mRNA levels of Hdac3, a target of miR-29b-1-5p, as well as its cofactor NCoR1. KYN is a ligand for the aryl hydrocarbon receptor (AhR). We hypothesized that AhR mediates KYN's effects in BMSCs. Indeed, AhR inhibitors (CH-223191 and 3',4'-dimethoxyflavone [DMF]) partially rescued secreted CXCL12 protein levels in BMSCs treated with KYN. Importantly, we found that treatment with CXCL12, or transfection with an miR29b-1-5p antagomir, downregulated the AhR mRNA level, while transfection with miR29b-1-5p mimic significantly upregulated its level. Further, CXCL12 treatment downregulated IDO, an enzyme responsible for generating KYN. Our findings reveal novel molecular pathways involved in KYN's age-associated effects in the bone microenvironment that may be useful translational targets for treating osteoporosis.

2.
J Endocrinol ; 2019 07 01.
Article in English | MEDLINE | ID: mdl-31370004

ABSTRACT

Excess fat within bone marrow is associated with lower bone density. Metabolic stressors such as chronic caloric restriction (CR) can exacerbate marrow adiposity, and increased glucocorticoid signaling and adrenergic signaling are implicated in this phenotype. The current study tested the role of glucocorticoid signaling in CR-induced stress by conditionally deleting the glucocorticoid receptor (GR) in bone marrow osteoprogenitors (Osx1-Cre) of mice subjected to CR and ad libitum diets. Conditional knockout of the GR (GR-CKO) reduced cortical and trabecular bone mass as compared to wildtype (WT) mice under both ad libitum and CR conditions. No interaction was detected between genotype and diet, suggesting that the GR is not required for CR-induced skeletal changes. The lower bone mass in GR-CKO mice, and the further suppression of bone by CR, resulted from suppressed bone formation. Interestingly, treatment with the -adrenergic receptor antagonist propranolol mildly but selectively improved metrics of cortical bone mass in GR-CKO mice during CR, suggesting interaction between adrenergic and glucocorticoid signaling pathways that affects cortical bone. GR-CKO mice dramatically increased marrow fat under both ad libitum and CR-fed conditions, and surprisingly propranolol treatment was unable to rescue CR-induced marrow fat in either WT or GR-CKO mice. Additionally, serum corticosterone levels were selectively elevated in GR-CKO mice with CR, suggesting the possibility of bone-hypothalamus-pituitary-adrenal crosstalk during metabolic stress. This work highlights the complexities of glucocorticoid and ß-adrenergic signaling in stress-induced changes in bone mass, and the importance of GR function in suppressing marrow adipogenesis while maintaining healthy bone mass.

3.
J Endocrinol ; 2019 07 01.
Article in English | MEDLINE | ID: mdl-31362266

ABSTRACT

Osteoporosis, low bone mass that increases fracture susceptibility, affects approximately 75 million individuals in the United States, Europe and Japan, with the number of osteoporotic fractures expected to increase by more than 3-fold over the next 50 years. Bone mass declines with age, although the mechanisms for this decrease are unclear. Aging enhances production of reactive oxygen species, which can affect bone formation and breakdown. The multiple sclerosis drug Tecfidera contains dimethylfumarate, which is rapidly metabolized to monomethylfumarate (MMF); MMF is thought to function through nuclear factor erythroid-derived-2-like-2 (Nrf2), a transcription factor activated by oxidative stress which induces the expression of endogenous anti-oxidant systems. We hypothesized that MMF-elicited increases in anti-oxidants would inhibit osteopenia induced by ovariectomy, as a model of aging-related osteoporosis and high oxidative stress. We demonstrated that MMF activated Nrf2 and induced anti-oxidant Nrf2 target gene expression in bone marrow-derived mesenchymal stem cells. Sham-operated or ovariectomized adult female mice were fed chow with or without MMF and various parameters monitored. Ovariectomy produced the expected effects, decreasing bone mineral density and increasing body weight, fat mass, bone marrow adiposity and serum receptor activator of nuclear factor-kappa-B ligand (RANKL) levels. MMF decreased fat but not lean mass. MMF improved trabecular bone microarchitecture after adjustment for body weight, although the unadjusted data showed few differences; MMF also tended to increase adjusted cortical bone and to reduce bone marrow adiposity and serum RANKL levels. Because these results suggest the possibility that MMF might be beneficial for bone, further investigation seems warranted.

4.
Mol Cell Endocrinol ; 474: 176-183, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29530783

ABSTRACT

We previously found that 3- and 6-month-old male mice with conditional ablation of protein kinase D1 (PRKD1) in osteoprogenitor cells (expressing Osterix) exhibited reduced bone mass. Others have demonstrated similar effects in young female PRKD1-deficient mice. Here we examined the bone resorptive response of adult female floxed control and conditional knockout (cKO) mice undergoing sham surgery or ovariectomy (OVX). Femoral and tibial bone mineral density (BMD) values were significantly reduced upon OVX in control, but not cKO, females compared to the respective sham-operated mice. Micro-CT analysis showed that OVX significantly increased trabecular number and decreased trabecular spacing in cKO but not control mice. Finally, in control mice serum levels of a marker of bone resorption (pyridinoline crosslinks) and the osteoclast activator RANKL significantly increased upon OVX; however, no such OVX-induced increase was observed in cKO mice. Our results suggest the potential importance of PRKD1 in response to estrogen loss in bone.


Subject(s)
Bone Resorption/enzymology , Bone Resorption/etiology , Ovariectomy , Protein Kinase C/deficiency , Amino Acids/blood , Animals , Bone Density , Bone Resorption/blood , Bone Resorption/pathology , Bone and Bones/pathology , Female , Mice, Knockout , Minerals/metabolism , Organ Size , Osteoprotegerin/metabolism , Protein Kinase C/metabolism , RANK Ligand/blood , Stem Cells/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism
5.
Bone ; 115: 15-24, 2018 10.
Article in English | MEDLINE | ID: mdl-29499416

ABSTRACT

Except for the essential amino acids (AAs), much of the focus on adequate dietary protein intake has been on total nitrogen and caloric intake rather than AA composition. Recent data, however, demonstrate that "amino-acid sensing" can occur through either intracellular or extracellular nutrient-sensing mechanisms. In particular, members of the class 3 G-protein coupled receptor family, like the calcium-sensing receptor are known to preferentially bind specific AAs, which then modulate receptor activation by calcium ions and thus potentially impact bone turnover. In pursuing the possibility of direct nutrient effects on bone cells, we examined individual AA effects on osteoprogenitor/bone marrow stromal cells (BMSCs), a key target for bone anabolism. We demonstrate that BMSCs express both intracellular and extracellular nutrient sensing pathways and that AAs are required for BMSC survival. In addition, certain AA types, like members of the aromatic AAs, can potently stimulate increases in intracellular calcium and ERK phosphorylation/activation. Further, based on the in vitro data, we examined the effect of specific AAs on bone mass. To better evaluate the impact of specific AAs, we added these to a low-protein diet. Our data demonstrate that a low-protein diet itself is associated with a significant drop in bone mineral density (BMD) in the older mice, related, at least in part, to an increase in osteoclastic activity. This drop in BMD in mice on the low-protein diet is prevented by addition of AAs from the aromatic group. Taken together our data show that AAs function as specific and selective signaling molecules in bone cells.


Subject(s)
Amino Acids/metabolism , Bone Remodeling/physiology , Signal Transduction/physiology , Animals , Diet , Humans
6.
Mol Cell Endocrinol ; 461: 22-31, 2018 02 05.
Article in English | MEDLINE | ID: mdl-28811183

ABSTRACT

Protein kinase D1 (PRKD1) is thought to play a role in a number of cellular functions, including proliferation and differentiation. We hypothesized that PRKD1 in bone marrow-derived mesenchymal stem cells (BMMSC) could modulate osteogenesis. In BMMSCs from floxed PRKD1 mice, PRKD1 ablation with adenovirus-mediated Cre-recombinase expression inhibited BMMSC differentiation in vitro. In 3- and 6-month-old conditional knockout mice (cKO), in which PRKD1 was ablated in osteoprogenitor cells by osterix promoter-driven Cre-recombinase, bone mineral density (BMD) was significantly reduced compared with floxed control littermates. Microcomputed tomography analysis also demonstrated a decrease in trabecular thickness and bone volume fraction in cKO mice at these ages. Dynamic bone histomorphometry suggested a mineralization defect in the cKO mice. However, by 9 months of age, the bone appeared to compensate for the lack of PRKD1, and BMD was not different. Taken together, these results suggest a potentially important role for PRKD1 in bone formation.


Subject(s)
Bone Density , Gene Deletion , Osteogenesis , Protein Kinase C/genetics , Stem Cells/enzymology , Adenoviridae/metabolism , Alkaline Phosphatase/metabolism , Amino Acids/blood , Animals , Bone Marrow Cells/cytology , Calcification, Physiologic , Integrases/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Transgenic , Protein Kinase C/metabolism
7.
J Bone Miner Res ; 32(11): 2182-2193, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28727234

ABSTRACT

Age-dependent bone loss occurs in humans and in several animal species, including rodents. The underlying causal mechanisms are probably multifactorial, although an age-associated increase in the generation of reactive oxygen species has been frequently implicated. We previously reported that aromatic amino acids function as antioxidants, are anabolic for bone, and that they may potentially play a protective role in an aging environment. We hypothesized that upon oxidation the aromatic amino acids would not only lose their anabolic effects but also potentially become a catabolic byproduct. When measured in vivo in C57BL/6 mice, the tryptophan oxidation product and kynurenine precursor, N-formylkynurenine (NFK), was found to increase with age. We tested the direct effects of feeding kynurenine (kyn) on bone mass and also tested the short-term effects of intraperitoneal kyn injection on bone turnover in CD-1 mice. µCT analyses showed kyn-induced bone loss. Levels of serum markers of osteoclastic activity (pyridinoline [PYD] and RANKL) increased significantly with kyn treatment. In addition, histological and histomorphometric studies showed an increase in osteoclastic activity in the kyn-treated groups in both dietary and injection-based studies. Further, kyn treatment significantly increased bone marrow adiposity, and BMSCs isolated from the kyn-injected mice exhibited decreased mRNA expression of Hdac3 and its cofactor NCoR1 and increased expression of lipid storage genes Cidec and Plin1. A similar pattern of gene expression is observed with aging. In summary, our data show that increasing kyn levels results in accelerated skeletal aging by impairing osteoblastic differentiation and increasing osteoclastic resorption. These data would suggest that kyn could play a role in age-induced bone loss. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Aging/metabolism , Aging/pathology , Bone Resorption/pathology , Kynurenine/metabolism , Tryptophan/metabolism , Adiposity , Aging/blood , Animals , Body Weight , Bone Resorption/blood , Bone Resorption/diagnostic imaging , Bone Resorption/metabolism , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Calcification, Physiologic , Cell Differentiation , Diet , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/analogs & derivatives , Kynurenine/blood , Male , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Osteoclasts/metabolism , X-Ray Microtomography
8.
J Bone Miner Res ; 32(7): 1537-1545, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28300329

ABSTRACT

IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p < 0.001). HOMA-IR was a negative predictor of cortical bone mineral content, cortical bone area (Ct.Ar), and polar strength strain index (pSSI; all p ≤ 0.01) after adjusting for race, sex, age, maturation, fat mass, and FFST. IGF-I was a positive predictor of most musculoskeletal endpoints (all p < 0.05) after adjusting for race, sex, age, and maturation. However, these relationships were moderated by HOMA-IR (pInteraction < 0.05). FFST positively correlated with most cortical bone outcomes (all p < 0.05). Path analyses demonstrated a positive relationship between IGF-I and Ct.Ar via FFST in the total cohort (ßIndirect Effect = 0.321, p < 0.001). However, this relationship was moderated in the children with high (ßIndirect Effect = 0.200, p < 0.001) versus normal (ßIndirect Effect = 0.408, p < 0.001) HOMA-IR. These data implicate insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Bone Density , Cortical Bone/metabolism , Insulin Resistance , Insulin-Like Growth Factor I/metabolism , Tibia/metabolism , Absorptiometry, Photon , Adolescent , Blood Glucose/metabolism , Child , Cortical Bone/diagnostic imaging , Female , Humans , Insulin/blood , Male , Tibia/diagnostic imaging , Tomography, X-Ray Computed
9.
J Nutr ; 145(12): 2699-704, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26491117

ABSTRACT

BACKGROUND: Data have shown that healthy children and adolescents have an inadequate intake of zinc, an essential nutrient for growth. It is unclear whether zinc supplementation can enhance bone health during this rapid period of growth and development. OBJECTIVE: The primary aim of this study was to determine the effect of zinc supplementation on biochemical markers of bone turnover and growth in girls entering the early stages of puberty. The secondary aim was to test moderation by race, body mass index (BMI) classification, and plasma zinc status at baseline. METHODS: One hundred forty seven girls aged 9-11 y (46% black) were randomly assigned to a daily oral zinc tablet (9 mg elemental zinc; n = 75) or an identical placebo (n = 72) for 4 wk. Fasting plasma zinc, procollagen type 1 amino-terminal propeptide (P1NP; a bone formation marker), carboxy-terminal telopeptide region of type 1 collagen (ICTP; a bone resorption marker), and insulin-like growth factor I (IGF-I) were assessed at baseline and post-test. Additional markers of bone formation (osteocalcin) and resorption (urinary pyridinoline and deoxypyridinoline) were also measured. RESULTS: Four weeks of zinc supplementation increased plasma zinc concentrations compared with placebo [mean change, 1.8 µmol/L (95% CI: 1.0, 2.6) compared with 0.2 µmol/L (95% CI: -0.3, 0.7); P < 0.01]. Zinc supplementation also increased serum P1NP concentrations compared with placebo [mean change, 23.8 µmol/L (95% CI: -14.9, 62.5) compared with -31.0 µmol/L (95% CI: -66.4, 4.2); P = 0.04). There was no effect from zinc supplementation on osteocalcin, ICTP, pyridinoline, deoxypyridinoline, or IGF-I. There was no moderation by race, BMI classification, or plasma zinc status at baseline. CONCLUSIONS: Our data suggest that 4 wk of zinc supplementation increases bone formation in premenarcheal girls. Further studies are needed to determine whether supplemental zinc can improve childhood bone strength. This trial was registered at clinicaltrials.gov as NCT01892098.


Subject(s)
Bone Development/drug effects , Dietary Supplements , Peptide Fragments/blood , Procollagen/blood , Puberty/physiology , Zinc/administration & dosage , Amino Acids/urine , Biomarkers/blood , Body Weight , Bone Development/physiology , Bone Remodeling/drug effects , Bone Remodeling/physiology , Child , Collagen Type I/blood , Female , Humans , Insulin-Like Growth Factor I/analysis , Osteocalcin/blood , Peptides/blood , Placebos , Zinc/blood
10.
Mol Cell Endocrinol ; 410: 87-96, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25637715

ABSTRACT

Age-induced bone loss is associated with greater bone resorption and decreased bone formation resulting in osteoporosis and osteoporosis-related fractures. The etiology of this age-induced bone loss is not clear but has been associated with increased generation of reactive oxygen species (ROS) from leaky mitochondria. ROS are known to oxidize/damage the surrounding proteins/amino acids/enzymes and thus impair their normal function. Among the amino acids, the aromatic amino acids are particularly prone to modification by oxidation. Since impaired osteoblastic differentiation from bone marrow mesenchymal stem cells (BMMSCs) plays a role in age-related bone loss, we wished to examine whether oxidized amino acids (in particular the aromatic amino acids) modulated BMMSC function. Using mouse BMMSCs, we examined the effects of the oxidized amino acids di-tyrosine and kynurenine on proliferation, differentiation and Mitogen-Activated Protein Kinase (MAPK) pathway. Our data demonstrate that amino acid oxides (in particular kynurenine) inhibited BMMSC proliferation, alkaline phosphatase expression and activity and the expression of osteogenic markers (Osteocalcin and Runx2). Taken together, our data are consistent with a potential pathogenic role for oxidized amino acids in age-induced bone loss.


Subject(s)
Amino Acids, Aromatic/pharmacology , Anabolic Agents/pharmacology , Mesenchymal Stem Cells/drug effects , Osteoporosis/etiology , Oxidation-Reduction , Amino Acids, Aromatic/chemistry , Anabolic Agents/chemistry , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , MAP Kinase Signaling System/drug effects , Mice , Tryptophan/chemistry , Tryptophan/pharmacology , Tyrosine/chemistry , Tyrosine/pharmacology
11.
Calcif Tissue Int ; 95(2): 174-82, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25000990

ABSTRACT

We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.


Subject(s)
Amino Acids, Aromatic/pharmacology , Osteoclasts/drug effects , Phenylalanine/pharmacology , Tryptophan/pharmacology , Tyrosine/pharmacology , Animals , Bone Resorption/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Diet , Dietary Supplements , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
13.
Am J Physiol Gastrointest Liver Physiol ; 295(1): G37-G44, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18483181

ABSTRACT

Lasp-1 (LIM and SH3 domain protein 1) is a multidomain actin-binding protein that is differentially expressed within epithelial tissues and brain. In the gastric mucosa, Lasp-1 is highly expressed in the HCl-secreting parietal cell, where it is prominently localized within the F-actin-rich subcellular regions. Histamine-induced elevation of parietal cell [cAMP]i increases Lasp-1 phosphorylation, which is correlated with activation of HCl secretion. To determine whether Lasp-1 is involved in the regulation of HCl secretion in vivo, we generated a murine model with a targeted disruption of the Lasp-1 gene. Lasp-1-null mice had slightly lower body weights but developed normally and had no overt phenotypic abnormalities. Basal HCl secretion was unaffected by loss of Lasp-1, but histamine stimulation induced a more robust acid secretory response in Lasp-1-null mice compared with wild-type littermates. A similar effect of histamine was observed in isolated gastric glands on the basis of measurements of accumulation of the weak base [14C]aminopyrine. In addition, inhibition of the acid secretory response to histamine by H2 receptor blockade with ranitidine proceeded more slowly in glands from Lasp-1-null mice. These findings support the conclusion that Lasp-1 is involved in the regulation of parietal HCl secretion. We speculate that cAMP-dependent phosphorylation of Lasp-1 alters interactions with F-actin and/or endocytic proteins that interact with Lasp-1, thereby regulating the trafficking/activation of the H+, K+-ATPase (proton pump).


Subject(s)
Gastric Acid/metabolism , Gastric Mucosa/metabolism , Histamine/pharmacology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Aging , Animals , Cytoskeletal Proteins , Female , Gastric Mucosa/cytology , Gastric Mucosa/drug effects , Gene Deletion , LIM Domain Proteins , Male , Mice , Mice, Inbred C57BL , Osteoclasts/metabolism
14.
J Bone Miner Res ; 23(6): 870-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18435579

ABSTRACT

INTRODUCTION: Body weight is positively correlated with bone mass and density, and both muscle mass and body fat are thought to play a role in regulating bone metabolism. We examined bone metabolism in calorically restricted mice to determine how alterations in soft tissue mass affect bone mass, density, and strength. MATERIALS AND METHODS: Caloric restriction (CR) was initiated in male mice at 14 wk of age at 10% restriction, increased to 25% restriction at 15 wk, and then increased to 40% restriction at 16 wk, where it was maintained until 24 wk of age when the study was terminated. Control mice were fed ad libitum (AL). Body composition, BMD, and BMC were measured by DXA, BMD and BMC in the femoral metaphysis were measured by pQCT, femora were tested in three-point bending, serum leptin and IGF-1 were measured using immunoassay, and osteoblast and osteoclast numbers were determined using histomorphometry. RESULTS: Body weight, lean mass, fat mass, percent body fat, serum leptin, and serum IGF-1 were all significantly lower in CR mice than AL mice. Whole body BMC and BMD did not differ significantly between the two groups. Femur BMC, BMD, cortical thickness, and fracture strength decreased significantly in CR mice, but trabecular bone volume fraction in the femur did not change with food restriction. Vertebral cortical thickness also decreased with caloric restriction, whereas spine BMC, BMD, and trabecular bone volume fraction were significantly increased with caloric restriction. CONCLUSIONS: Caloric restriction and its related weight reduction are associated with marked decreases in lean mass, fat mass, serum leptin and IGF-1, and cortical bone mass. Consistent with the opposite effects of leptin on cortical and cancellous bone, trabecular bone mass is spared during food restriction.


Subject(s)
Body Weight , Bone Density/physiology , Bone and Bones/physiology , Caloric Restriction , Animals , Biomarkers/blood , Insulin-Like Growth Factor I/metabolism , Leptin/blood , Male , Mice , Organ Size
15.
J Bone Miner Res ; 23(4): 536-43, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18072880

ABSTRACT

UNLABELLED: GIP is an important hormonal link between nutrition and bone formation. We show for the first time that BMSCs express functional GIP receptors, that expression decreases with aging, and that elevations in GIP can prevent age-associated bone loss. INTRODUCTION: We previously showed that C57BL/6 mice lose bone mass as they age, particularly between 18 and 24 mo of age. The mechanisms involved in this age-dependent induced bone loss are probably multifactorial, but adequate nutrition and nutritional signals seem to be important. Glucose-dependent insulinotropic peptide (GIP) is an enteric hormone whose receptors are present in osteoblasts, and GIP is known to stimulate osteoblastic activity in vitro. In vivo, GIP-overexpressing C57BL/6 transgenic (GIP Tg(+)) mice have increased bone mass compared with controls. Bone histomorphometric data suggest that GIP increases osteoblast number, possibly by preventing osteoblastic apoptosis. However, potential GIP effects on osteoblastic precursors, bone marrow stromal cells (BMSCs), had not previously been examined. In addition, effects of GIP on age-induced bone loss were not known. MATERIALS AND METHODS: Changes in BMD, biomechanics, biomarkers of bone turnover, and bone histology were assessed in C57BL/6 GIP Tg(+) versus Tg(-) (littermate) mice between the ages of 1 and 24 mo of age. In addition, age-related changes in GIP receptor (GIPR) expression and GIP effects on differentiation of BMSCs were also assessed as potential causal factors in aging-induced bone loss. RESULTS: We report that bone mass and bone strength in GIP Tg(+) mice did not drop in a similar age-dependent fashion as in controls. In addition, biomarker measurements showed that GIP Tg(+) mice had increased osteoblastic activity compared with wildtype control mice. Finally, we report for the first time that BMSCs express GIPR, that the expression decreases in an age-dependent manner, and that stimulation of BMSCs with GIP led to increased osteoblastic differentiation. CONCLUSIONS: Our data show that elevated GIP levels prevent age-related loss of bone mass and bone strength and suggest that age-related decreases in GIP receptor expression in BMSCs may play a pathophysiological role in this bone loss. We conclude that elevations in GIP may be an effective countermeasure to age-induced bone loss.


Subject(s)
Aging/physiology , Gastric Inhibitory Polypeptide/metabolism , Glucose/metabolism , Osteoporosis/physiopathology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
16.
Bone ; 40(5): 1352-60, 2007 May.
Article in English | MEDLINE | ID: mdl-17321229

ABSTRACT

Glucose-dependent insulinotropic peptide (GIP) is an intestinally secreted hormone the release of which is stimulated by nutrient ingestion. We previously reported that GIP receptors are present in osteoblastic cells and that GIP increases collagen type I synthesis and alkaline phosphatase activity in isolated osteoblasts. We have also shown that osteoclasts express GIP receptors and that GIP inhibits osteoclastic activity and differentiation. In addition, using GIP receptor knockout mice we demonstrated that absence of GIP receptor signaling resulted in a low bone mass phenotype. To further define GIP's role as an anabolic hormone in vivo, we utilized a genetically altered mouse model, a transgenic mouse overexpressing GIP under the control of the metallothionein promoter (Tg+). Tg+ mice had significantly higher mean GIP levels even in the absence of added dietary zinc. Tg+ animals also had a significant increase in markers of bone formation and a decrease in markers of bone resorption. Consistent with these biochemical data, GIP transgenic mice had a significant increase in bone mass as measured by densitometry and histomorphometry. These data support the conclusion that GIP inhibits bone resorption and stimulates bone formation and that excess signaling through the GIP receptor results in gain of bone mass. In view of GIP's role in nutrient absorption, our data suggest that this hormone may serve an important role in linking nutrient ingestion to bone formation.


Subject(s)
Bone Density/physiology , Bone Resorption/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gene Expression Regulation , Animals , Body Composition , Bone Resorption/genetics , Gastric Inhibitory Polypeptide/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity , Receptors, Gastrointestinal Hormone/metabolism
17.
Am J Physiol Endocrinol Metab ; 292(2): E543-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17003233

ABSTRACT

Acute nutrient ingestion leads to a rapid inhibition of bone resorption while effects on makers of bone formation are less marked or absent, suggesting that there is a transient shift toward skeletal accretion in the immediate postprandial period. The cellular bases for these effects are not clear. Glucose-dependent insulinotropic peptide (GIP), a known modulator of glucose-induced insulin secretion, is secreted from intestinal endocrine cells in response to nutrient ingestion. In addition to the effect of GIP on pancreatic beta-cells, GIP receptors are expressed by osteoclastic cells [corrected] in bone, suggesting a role for this incretin hormone in bone formation. To determine whether GIP also plays a role in the anti-resorptive effect of nutrient ingestion, osteoclasts were analyzed for the presence of GIP receptors by PCR, immunohistochemical and immunocytochemical analyses of bone tissue, and freshly isolated mature osteoclasts and osteoclast-like cells cultured in vitro. Osteoclast function was assessed by fetal long bone resorption assay and by use of the Osteologic disc assay. Our results demonstrate that GIP receptor transcripts and protein are present in osteoclasts. In addition, with the use of an in vitro organ culture system and mature osteoclasts, GIP was found to inhibit bone resorption in the organ culture system and the resorptive activity of mature osteoclasts. These data are consistent with the hypothesis that GIP inhibits bone breakdown through a direct effect on osteoclast-resorptive activity and suggest one mechanism for the postprandial reduction in markers of bone breakdown.


Subject(s)
Gastric Inhibitory Polypeptide/pharmacology , Osteoclasts/drug effects , Animals , Bone Resorption/prevention & control , Bone and Bones/embryology , Bone and Bones/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Female , Gastric Inhibitory Polypeptide/physiology , Gene Expression Regulation/drug effects , Mice , Mice, Inbred C57BL , Osteoclasts/metabolism , Osteoclasts/physiology , Parathyroid Hormone/antagonists & inhibitors , Parathyroid Hormone/pharmacology , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Gastrointestinal Hormone/metabolism
18.
Peptides ; 27(11): 2750-5, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16822587

ABSTRACT

Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone that rises rapidly in response to nutrient ingestion. The GIP receptor is widely expressed in the brain including the brain stem, telencephalon, diencephalon, olfactory bulb, pituitary, and cerebellum. Until recently it was not clear what the endogenous ligand for this receptor was because no GIP expression had been demonstrated in the brain. GIP synthesis has now been documented in the dentate gyrus of the hippocampus. To define GIP effects on behavior we utilized a mouse model a GIP-overexpressing transgenic mouse (GIP Tg). Specifically, anxiety-related behavior, exploration, memory, and nociception were examined. Compared to age-matched adult male C57BI/6 controls GIP Tg mice displayed enhanced exploratory behavior in the open-field locomotor activity test. GIP Tg mice also demonstrated increased performance in some of the motor function tests. These data suggest that the GIP receptor plays a role in the regulation of locomotor activity and exploration. To our knowledge, this is the first report of effects of GIP on behavior.


Subject(s)
Anxiety , Gastric Inhibitory Polypeptide/metabolism , Glucose/pharmacology , Maze Learning , Memory , Animals , Anxiety/genetics , Gastric Inhibitory Polypeptide/blood , Gastric Inhibitory Polypeptide/genetics , Male , Mice , Mice, Transgenic , Nociceptors/drug effects , Up-Regulation
19.
Bone ; 39(4): 845-53, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16750436

ABSTRACT

The mechanisms underlying age-related loss of muscle and bone tissue are poorly understood but are thought to involve changes in sex hormone status, physical activity, and circulating levels of inflammatory cytokines. This study attempts to develop an animal model useful for evaluating these mechanisms in vivo. Male C57BL/6 mice were included for study at 3, 6, 12, 18, 24, and 29 months of age. Endocortical mineralizing surface, serum leptin, body weight, and percentage of body fat all increased between 6 and 12 months of age as activity level declined. Serum levels of the inflammatory marker IL-6 increased significantly after 12 months of age, following the observed increase in body weight and percent body fat. Hindlimb muscle mass declined significantly between 18 and 24 months of age, both absolutely and relative to total body mass, with a further decline ( approximately 15%) between 24 and 29 months. Loss of muscle mass after 18 months of age was accompanied by a significant increase in bone resorption, as indicated by serum pyridinoline cross-links, and a significant decrease in fat mass, serum leptin, bone strength, bone mineral density, and vertical cage activity. No significant changes in serum testosterone with aging were detected in the mice, as levels were essentially constant between 6 and 29 months. Our data show that mice lose a significant amount of muscle and bone tissue with age, and this loss of musculoskeletal tissue is accompanied by a drop in serum leptin and preceded by a significant decrease in physical activity.


Subject(s)
Bone and Bones/physiology , Leptin/blood , Motor Activity/physiology , Muscle, Skeletal/physiology , Age Factors , Animals , Biomechanical Phenomena , Blood Glucose/metabolism , Body Composition/physiology , Body Mass Index , Body Weight/physiology , Bone Density/physiology , Bone and Bones/cytology , Bone and Bones/metabolism , Interleukin-6/blood , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Models, Animal , Muscle Contraction/physiology , Muscle, Skeletal/cytology , Osteocalcin/metabolism , Tomography, X-Ray Computed/methods
20.
Biochem Biophys Res Commun ; 340(4): 1091-7, 2006 Feb 24.
Article in English | MEDLINE | ID: mdl-16403440

ABSTRACT

The mechanisms underlying diabetes-mediated bone loss are not well defined. It has been reported that the advanced glycation endproducts (AGEs) and receptor for AGEs (RAGEs) are involved in diabetic complications. Here, mice deficient in RAGE were used as a model for investigating the effects of RAGE on bone mass. We found that RAGE-/- mice have a significantly increased bone mass and bone biomechanical strength and a decreased number of osteoclasts compared to wild-type mice. The serum levels of IL-6 and bone breakdown marker pyridinoline were significantly decreased in RAGE-/- mice. RAGE-/- mice maintain bone mass following ovariectomy, whereas wild-type mice lose bone mass. Furthermore, osteoclast-like cells do express RAGE mRNA. Our data therefore indicate that RAGE serves as a positive factor to regulate the osteoclast formation, directly implicates a role for RAGE in diabetes-promoted bone destruction, and documents that the AGE-RAGE interaction may account for diabetes associated bone loss.


Subject(s)
Bone Resorption/metabolism , Bone Resorption/pathology , Diabetes Complications/metabolism , Diabetes Complications/pathology , Osteoclasts/metabolism , Osteoclasts/pathology , Receptors, Immunologic/deficiency , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor for Advanced Glycation End Products
SELECTION OF CITATIONS
SEARCH DETAIL
...