Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Water Res ; 256: 121582, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608621

ABSTRACT

Ion-adsorption rare earth element (REE) deposits distributed in the subtropics provide a rich global source of REEs, but in situ injection of REEs extractant into the mine can result in leachate being leaked into the surrounding groundwater systems. Due to the lack of understanding of REE speciation distribution, particularly colloidal characteristics in a mining area, the risks of REEs migration caused by in situ leaching of ion-adsorption REE deposits has not been concerned. Here, ultrafiltration and asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (AF4-ICP-MS) were integrated to characterize the size and composition of REEs in leachate and groundwater from mining catchments in South China. Results show that REEs were associated with four fractions: 1) the <1 kDa fraction including dissolved REEs; 2) the 1 - 100 kDa nano-colloidal fraction containing organic compounds; 3) the 100 kDa - 220 nm fine colloids including organic-mineral (Fe, Mn and Al (oxy)hydroxides and clay minerals); 4) the >220 nm coarse colloids and acid soluble particles (ASPs) comprising minerals. Influenced by the ion exchange effect of in situ leaching, REEs in leachate were mostly dissolved (79 %). The pH of the groundwater far from the mine site was increased (5.8 - 7.3), the fine organic-mineral colloids (46 % - 80 %) were the main vectors of transport for REEs. Further analysis by AF4 revealed that the fine colloids can be divided into mineral-rich (F1, 100 kDa - 120 nm) and organic matter-rich (F2, 120 - 220 nm) populations. The main colloids associated with REEs shifted from F1 (64 % ∼ 76 %) to F2 (50 % ∼ 52 %) away from the mining area. For F1 and F2, the metal/C molar ratio decreased away from the mining area and middle to heavy REE enrichment was presented. According to the REE fractionation, organic matter was the predominant component capable of binding REEs in fine colloids. Overall, our results indicate that REEs in the groundwater system shifted from the dissolved to the colloidal phase in a catchment affected by in situ leaching, and organic-mineral colloids play an important role in facilitating the migration of REEs.


Subject(s)
Colloids , Groundwater , Metals, Rare Earth , Minerals , Mining , Water Pollutants, Chemical , Groundwater/chemistry , Colloids/chemistry , China , Minerals/chemistry , Adsorption
2.
Environ Sci Technol ; 57(37): 13991-14001, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37523249

ABSTRACT

Coprecipitation of Fe/Cr hydroxides with natural organic matter (NOM) is an important pathway for Cr immobilization. However, the role of NOM in coprecipitation is still controversial due to its molecular heterogeneity and diversity. This study focused on the molecular selectivity of NOM toward Fe/Cr coprecipitates to uncover the fate of Cr via Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). The results showed that the significant effects of Suwannee River NOM (SRNOM) on Cr immobilization and stability of the Fe/Cr coprecipitates did not merely depend on the adsorption of SRNOM on Fe/Cr hydroxides. FT-ICR-MS spectra suggested that two pathways of molecular selectivity of SRNOM in the coprecipitation affected Cr immobilization. Polycyclic aromatics and polyphenolic compounds in SRNOM preferentially adsorbed on the Fe/Cr hydroxide nanoparticles, which provided extra binding sites and promoted the aggregation. Notably, some specific compounds (i.e., polyphenolic compounds and highly unsaturated phenolic compounds), less unsaturated and more oxygenated than those adsorbed on Fe/Cr hydroxide nanoparticles, were preferentially incorporated into the insoluble Cr-organic complexes in the coprecipitates. Kendrick mass defect analysis revealed that the insoluble Cr-organic complexes contained fewer carbonylated homologous compounds. More importantly, the spatial distribution of insoluble Cr-organic complexes was strongly related to Cr immobilization and stability of the Fe/Cr-NOM coprecipitates. The molecular information of the Fe/Cr-NOM coprecipitates would be beneficial for a better understanding of the transport and fate of Cr and exploration of the related remediation strategy.


Subject(s)
Nanoparticles , Phenols , Mass Spectrometry , Nanoparticles/chemistry , Adsorption
3.
J Hazard Mater ; 453: 131390, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37060752

ABSTRACT

The present study investigated the co-transport behavior of three REEs3+ (La3+, Gd3+, and Yb3+) with and without biochar nanoparticles (BC NPs) in water-saturated porous media. The presence of REEs3+ enhanced the retention of BC NPs in quartz sand (QS) due to decreased electrostatic repulsion between BC NPs and QS, enhanced aggregation of BC NPs, and the contribution of straining. The distribution coefficients (KD) in packed columns in the co-transport of BC NPs and three REEs3+ were much smaller than in batch experiments due to the different hydrodynamic conditions. In addition, we, for the first time, found that REE fractionation in the solid-liquid phase occurred during the co-transport of REEs3+ in the presence and absence of BC NPs. Note that the REE fractionation during the co-transport, which is helpful for the tracing application during earth surface processes, was driven by the interaction of REEs3+ with QS and BC NPs. This study elucidates novel insights into the fate of BC NPs and REEs3+ in porous media and indicates that (i) mutual effects between BC NPs and REE3+ should be considered when BC was applied to REE contaminated aquatic and soil systems; and (ii) REE fractionation provides a useful tool for identifying the sources of coexisting substances.

4.
J Hazard Mater ; 443(Pt A): 130241, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36308929

ABSTRACT

Mining activities in metal mine areas cause serious environmental pollution, thereby imposing stresses to soil ecosystems. Investigating the ecological pattern underlying contaminated soil microbial diversity is essential to understand ecosystem responses to environment changes. Here we collected 624 soil samples from 49 representative metal mines across eastern China and analyzed their soil microbial diversity and biogeographic patterns by using 16 S rRNA gene amplicons. The results showed that deterministic factors dominated in regulating the microbial community in non-contaminated and contaminated soils. Soil pH played a key role in climatic influences on the heavy metal-contaminated soil microbial community. A core microbiome consisting of 25 taxa, which could be employed for the restoration of contaminated soils, was identified. Unlike the non-contaminated soil, stochastic processes were important in shaping the heavy metal-contaminated soil microbial community. The largest source of variations in the soil microbial community was land use type. This result suggests that varied specific ecological remediation strategy ought to be developed for differed land use types. These findings will enhance our understanding of the microbial responses to anthropogenically induced environmental changes and will further help to improve the practices of soil heavy metal contamination remediation.


Subject(s)
Metals, Heavy , Microbiota , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Microbiology , Metals, Heavy/toxicity , Metals, Heavy/analysis , China
5.
Water Res ; 225: 119172, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36191530

ABSTRACT

Ion-adsorption rare earth element (REE) deposits are the main reservoirs of REEs worldwide, and are widely exploited in South China. Microbial diversity is essential for maintaining the performance and function of mining ecosystems. Investigating the ecological patterns underlying the REE mine microbiome is essential to understand ecosystem responses to environmental changes and to improve the bioremediation of mining areas. We applied 16S rRNA and ITS gene sequence analyses to investigate the composition characteristics of prokaryotic (bacteria, archaea) and fungal communities in a river impacted by REE acid mine drainage (REE-AMD). The river formed a unique micro-ecosystem, including the main prokaryotic taxa of Proteobacteria, Acidobacteria, Crenarchaeota, and Euryarchaeota, as well as the main fungal taxa of Ascomycota, Basidiomycota, and Chytridiomycota. Analysis of microbial diversity showed that, unlike prokaryotic communities that responded drastically to pollution disturbances, fungal communities were less affected by REE-AMD, but fluctuated significantly in different seasons. Ecological network analysis revealed that fungal communities have lower connectivity and centrality, and higher modularity than prokaryotic networks, indicating that fungal communities have more stable network structures. The introduction of REE-AMD mainly reduced the complexity of the community network and the number of keystone species, while the proportion of negative prokaryotic-fungal associations in the network increased. Ecological process analysis revealed that, compared to the importance of environmental selection for prokaryotes, stochastic processes might have contributed primarily to fungal communities in REE mining areas. These findings confirm that the different assembly mechanisms of prokaryotic and fungal communities are key to the differences in their responses to environmental perturbations. The findings also provide the first insights into microbiota assembly patterns in REE-AMD and important ecological knowledge for the formation and development of microbial communities in REE mining areas.


Subject(s)
Metals, Rare Earth , Microbiota , RNA, Ribosomal, 16S/genetics , Metals, Rare Earth/analysis , Mining , Archaea/genetics , China
6.
Anal Chem ; 94(30): 10745-10753, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35857440

ABSTRACT

This study presents the new application of dual-analyte single particle inductively coupled plasma quadrupole mass spectrometry (spICP-QMS) to the discrimination and quantification of two typical soil nanoparticles (kaolinite and goethite nanoparticles, abbr. KNPs and GNPs) in three samples (SA, SB, and SC) with three detection events (Al unpaired event, Fe unpaired event, and paired event). SA was mainly composed of KNPs with a concentration of 28 443 ± 817 particle mL-1 and a mean particle size of 140.7 ± 0.2 nm. SB was mainly composed of GNPs with a concentration of 39 283 ± 702 particle mL-1 and a mean particle size of 141.8 ± 2.9. In SC, the concentrations of KNPs and GNPs were 22 4541 ± 1401 and 70 604 ± 1623 particle mL-1, respectively, and the mean particle sizes of KNPs and GNPs were 140.7 ± 0.2 and 60.2 ± 0.3 nm, respectively. The accuracy of dual-analyte spICP-QMS was determined by spiking experiments, comparing these results with the measurements of other techniques, analyzing the samples in different SA and SB proportions and in different SC concentrations. Our results demonstrated that the dual-analyte spICP-QMS is a promising approach to distinguishing different kinds of natural NPs in soils.


Subject(s)
Metal Nanoparticles , Nanoparticles , Mass Spectrometry/methods , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Particle Size , Soil/chemistry
7.
Environ Microbiol ; 24(2): 919-937, 2022 02.
Article in English | MEDLINE | ID: mdl-33848048

ABSTRACT

Acid mine drainage (AMD) generated by rare earth elements (REEs) deposits exploration contains high concentrations of REEs, ammonium and sulfates, which is quite different from typical metallic AMD. Currently, microbial responses and ecological functions in REEs-AMD impacted rivers are unknown. Here, 16S rRNA analysis and genome-resolved metagenomics were performed on microbial community collected from a REEs-AMD contaminated river. The results showed that REEs-AMD significantly changed river microbial diversity and shaped unique indicator species (e.g. Thaumarchaeota, Methylophilales, Rhodospirillales and Burkholderiales). The main environmental factors regulating community were pH, ammonium and REEs, among which high concentration of REEs increased REEs-dependent enzyme-encoding genes (XoxF and ExaF/PedH). Additionally, we reconstructed 566 metagenome-assembled genomes covering 70.4% of identifying indicators. Genome-centric analysis revealed that the abundant archaea Thaumarchaeota and Xanthomonadaceae were often involved in nitrification and denitrification, while family Burkholderiaceae were capable of sulfide oxidation coupled with dissimilatory nitrate reduction to ammonium. These indicators play crucial roles in nitrogen and sulfur cycling as well as REEs immobilization in REEs-AMD contaminated rivers. This study confirmed the potential dual effect of REEs on microbial community at the functional gene level. Our investigation on the ecological roles of indicators further provided new insights for the development of REEs-AMD bioremediation.


Subject(s)
Metals, Rare Earth , Microbiota , Mining , RNA, Ribosomal, 16S/genetics , Rivers
8.
Water Res ; 201: 117331, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34153824

ABSTRACT

Microbial communities play crucial roles in mine drainage generation and remediation. Despite the wide distribution of archaea in the mine ecosystem, their diversity and ecological roles remain less understood than bacteria. Here, we retrieved 56 archaeal metagenome-assembled genomes from a river impacted by rare earth element (REE) mining activities in South China. Genomic analysis showed that archaea represented four distinct lineages, including phyla of Thaumarchaeota, Micrarchaeota, Nanoarchaeota and Thermoplasmata. These archaea represented a considerable fraction (up to 40%) of the total prokaryote community, which might contribute to nitrogen and sulfur cycling in the REE mine drainage. Reconstructed metabolic potential among diverse archaea taxa revealed that archaea were involved in the network of ammonia oxidation, denitrification, sulfate redox reaction, and required substrates supplied by other community members. As the dominant driver of ammonia oxidation, Thaumarchaeota might provide substrates to support the survival of two nano-sized archaea belonging to Micrarchaeota and Nanoarchaeota. Despite the absence of biosynthesis pathways for amino acids and nucleotides, the potential capacity for nitrite reduction (nirD) was observed in Micrarchaeota, indicating that these nano-sized archaea encompassed diverse metabolisms. Moreover, Thermoplasmata, as keystone taxa in community, might be the main genetic donor for the other three archaeal phyla, transferring many environmental resistance related genes (e.g., V/A-type ATPase and Vitamin B12-transporting ATPase). The genetic interactions within archaeal community through horizontal gene transfer might be the key to the formation of archaeal resistance and functional partitioning. This study provides putative metabolic and genetic insights into the diverse archaea taxa from community-level perspectives, and highlights the ecological roles of archaea in REE contaminated aquatic environment.


Subject(s)
Archaea , Microbiota , Archaea/genetics , China , Genome, Archaeal , Metagenome , Phylogeny , RNA, Ribosomal, 16S
9.
J Hazard Mater ; 400: 123289, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32947698

ABSTRACT

China exemplifies the serious and widespread soil heavy metal pollution generated by mining activities. A total of 420 soil samples from 58 metal mines was collected across Eastern China. Total and available heavy metal concentrations, soil physico-chemical properties and geological indices were determined and collected. Risk assessments were applied, and a successive multivariate statistical analysis was carried out to provide insights into the heavy metal contamination characteristics and environmental drivers of heavy metal availability. The results suggested that although the degrees of pollution varied between different mine types, in general they had similar contamination characteristics in different regions. The major pollutants for total concentrations were found to be Cd and As in south and northeast China. The availability of Zn and Cd is relatively higher in south China. Soil physico-chemical properties had major effect on metal availability where soil pH was the most important factor. On a continental scale, soil pH and EC were influenced by the local climate patterns which could further impact on heavy metal availability. Enlightened by this study, future remediation strategies should be focused on steadily increasing soil pH, and building adaptable and sustainable ecological system to maintain low metal availabilities in mine site soils.

10.
Sci Total Environ ; 660: 697-704, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30743955

ABSTRACT

Rare-earth elements (REEs) are known to be a group of emerging pollutants, but the geochemistry of REEs in river waters in ion-adsorption rare-earth mining areas has attracted little attention. In this study, samples of the <0.45 µm and 0.22-0.45 µm (large colloids) water fractions and acid-soluble particles (ASPs) were collected from a river impacted by ion-adsorption rare-earth mining activities. The roles of ligand complexation, colloid binding, and particle adsorption in REE transport and distribution were also investigated. Results showed higher concentrations of REEs in the <0.45 µm fraction of all sampling sites (3.30 × 10-2-9.42 µM) compared with that in the control site (1.21 × 10-3 µM); this fraction was also characterized by middle REE enrichment at upstream sites, where REEs are mainly controlled by the <0.22 µm fraction (55%-94% of the species found in the <0.45 µm fraction) and ligand complexation (REE3+, REE(SO4)+, and REE(CO3)+). At downstream sites, heavy REE enrichment was observed, which was largely determined by binding to large colloids (68%-83% of the species found in the <0.45 µm fraction) and adsorption to particles (>90% of the acidified bulk water). Furthermore, REE patterns indicated that the REE-associated large colloids were mineral or mixed mineral-organic matter (OM) at upstream sites and OM-dominated or functionalized at downstream sites. The particles were mainly coated by inorganic matter substances (e.g., Fe/Al oxyhydroxides). In summary, our results reveal that REE patterns provide a useful tool to study the fate of REEs in ion-adsorption rare-earth mining catchments.

11.
Sci Total Environ ; 646: 696-703, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30059929

ABSTRACT

The pollution of natural waters and sediments with metals derived from acid mine drainage (AMD) is a global environmental problem. However, the processes governing the transportation and transformation of AMD metals such as Cd in mountainous areas are poorly understood. In this study, the Cd isotopic composition and Cd concentration of river water and sediments (16 sampling sites) from an AMD-affected river in southern China were determined. Cd concentration in river water declined from its source at a tailings dam (304 µg L-1) to a point 14 km downstream (0.32 µg L-1). Sediment Cd concentration ranged from 0.18 to 39.9 µg g-1, suggesting that anthropogenic Cd is derived primarily from the tailing dam and easily enters the solid phase of the river. Isotopic data showed that the dissolved Cd in rivers was characterized by δ114/110Cd values ranging from 0.21‰ to 1.03‰, with a mean of 0.48‰. The greatest Cd isotope difference was observed between the water and sediments in the LW dam (Δ114/110Cdriver-sediment = 1.61‰, site 1), likely due to a rapid weathering dissolution of the ore tailings. In the river's upper reach (sites 2-3), isotope difference between river and sediment (Δ114/110Cdriver-sediment) ranged from 1.0‰ to 0.91‰. This suggests that a host of secondary processes might have impacted Cd isotope fractionation, including adsorption, ternary complexation and/or (co)precipitation of Cd on secondary oxides and hydroxides. In the middle and lower reaches, an abruptly elevated δ114/110Cd value near farmland (site 10) suggests the existence of a second Cd source. Based on the chemical properties of water samples we can attribute this heavy isotope signature to agricultural fertilizer and drainage from agricultural fields. Our results suggest that Cd isotope is a tracer for identifying and tracking Cd sources and attenuation mechanisms (adsorption/(co)precipitation) in a complex mountain watershed.

SELECTION OF CITATIONS
SEARCH DETAIL
...