Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 931: 172887, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38692317

ABSTRACT

Solar interface evaporation is an effective method for the treatment of water that has low energy consumption. Adsorption is recognized to be one of the most stable wastewater treatment methods and is widely used. Combining solar interface evaporation with adsorption provides a novel and low-cost approach for the efficient removal of heavy metals and organic pollutants from industrial wastewater. This paper reviews the characteristics and application of some common wastewater treatment methods. The photothermal conversion and the conceptual design of interface evaporation combined with adsorption are introduced and the photo-thermal conversion and adsorption methods are discussed. The study provides a summary of recent studies and advancements in interfacial evaporation-coupled adsorption materials, which include hydrogels, aerogels, and biomass materials for adsorption, and carbon materials for photothermal conversion. Finally, the current challenges encountered in industrial wastewater treatment are outlined and its prospects are discussed. The aim of this review is to explore a wide range of possibilities with the interfacial evaporation-coupled adsorption method and propose a new low-cost and high-efficiency method for industrial wastewater treatment.

2.
Bioresour Technol ; 400: 130667, 2024 May.
Article in English | MEDLINE | ID: mdl-38583674

ABSTRACT

Due to the complexity of biomass structures, the conversion of raw biomass into value-added chemicals is challenging and often requires efficient pretreatment of the biomass. In this paper, a simple and green pre-oxidation method, which was conducted under the conditions of 2 wt% H2O2, 80 min, and 150 °C, was reported to significantly increase the production of levoglucosan (LG) from biomass pyrolysis. The result showed that the LG yield significantly increased from 2.3 wt% (without pre-oxidation) to 23.1 wt% when pine wood was employed as a sample for pyrolysis at 400 °C, resulting from the removal of hemicellulose fraction and the in-situ acid catalysis of lignin carboxyl groups formed during the pre-oxidation. When the conditions for pre-oxidation became harsher than the above, the LG yield reduced because the decomposition of cellulose fraction in biomass. The study supplies an effective method for utilization of biomass as chemicals.


Subject(s)
Biomass , Glucose , Glucose/analogs & derivatives , Hydrogen Peroxide , Oxidation-Reduction , Pyrolysis , Hydrogen Peroxide/chemistry , Glucose/chemistry , Wood/chemistry , Pinus/chemistry , Lignin/chemistry , Lignin/analogs & derivatives
3.
ChemSusChem ; 12(16): 3702-3712, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31168952

ABSTRACT

In this Minireview, the multiple chemical synergies present in catalytic non-thermal plasma-assisted nitrogen fixation (NTPNF) are uncovered through a critical exploration of the underlying mechanisms, during which the catalyst, plasma, and reactants play different roles. For the gas-phase NTPNF, the synergies consist of different aspects of the catalytic pathways such as electron-impact dissociation; Zeldovich mechanism in the PNO interactions; and Eley-Rideal, Langmuir-Hinshelwood, surface adsorption, and diffusion mechanisms for the plasma-catalyst interactions. The synergies within the gas-liquid NTPNF involve contributions of plasma and UV excitation to the gas-phase reactions and the UV excitation of molecules at the liquid-surface interface, which improves synthesis of aqueous nitrate, nitrite, and ammonium products. Based on the various synergistic mechanisms during NTPNF, future potential applications are proposed for how NTPNF could benefit the sustainable nitrogen fixation industry.

4.
Bioresour Technol ; 268: 1-8, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30064033

ABSTRACT

The excessive oxygen content in biomass obstructs the production of high-quality bio-oils. In this work, we developed a tandem catalytic bed (TCB) of CeO2 and HZSM-5 in an analytical pyrolyzer to enhance the hydrocarbon production from co-pyrolysis of corn stover (CS) and LDPE. Results indicated that CeO2 could remove oxygen from acids, aldehydes and methoxy phenols, producing a maximum yield of hydrocarbons of 85% and highest selectivity of monocyclic aromatics of 73% in the TCB. The addition of LDPE exhibited a near-complete elimination of oxygenates, leaving hydrocarbons as the overwhelming products. With increasing LDPE proportion, the yield of aliphatics and the selectivity of BTX kept increasing. An optimum H/Ceff of 0.7 was superior to that reported in literature. Mechanisms consisting of deoxygenation, Diels-Alder reactions, hydrocarbon pool and hydrogen transfer reactions were discussed extensively. Our findings provide an efficient method to produce high-quality biofuels from renewable biomass resources.


Subject(s)
Biofuels , Hydrocarbons/chemistry , Plastics , Biomass , Catalysis , Hot Temperature
5.
Front Genet ; 9: 228, 2018.
Article in English | MEDLINE | ID: mdl-30042785

ABSTRACT

Genes do not work in isolation, but rather as part of networks that have many feedback and redundancy mechanisms. Studying the properties of genetic networks and how individual genes contribute to overall network functions can provide insight into genetically-mediated disease processes. Most analytical techniques assume a network topology based on normal state networks. However, gene perturbations often lead to the rewiring of relevant networks and impact relationships among other genes. We apply a suite of analysis methodologies to assess the degree of transcriptional network rewiring observed in different sets of melanoma cell lines using whole genome gene expression microarray profiles. We assess evidence for network rewiring in melanoma patient tumor samples using RNA-sequence data available from The Cancer Genome Atlas. We make a distinction between "unsupervised" and "supervised" network-based methods and contrast their use in identifying consistent differences in networks between subsets of cell lines and tumor samples. We find that different genes play more central roles within subsets of genes within a broader network and hence are likely to be better drug targets in a disease state. Ultimately, we argue that our results have important implications for understanding the molecular pathology of melanoma as well as the choice of treatments to combat that pathology.

6.
Bioresour Technol ; 265: 450-455, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29935454

ABSTRACT

The objective of this study was to evaluate the effect of inorganic species on torrefaction process and product properties. Torrefaction process of raw and leached rice husk was performed at different temperatures between 210 and 270 °C. Inorganic species have significant effect on the torrefaction process and properties of torrefaction products. The results indicated that solid yield increased, gas yield decreased and liquid yield remained unchanged for leached rice husk when compared to raw rice husk. Gas products from torrefaction process mainly contained CO2 and CO, and leaching process slightly reduced the volume concentration of CO2. Removal of inorganic species slightly decreased water content and increased organic component content in liquid products. Acetic acid, furfural, 2,3-dihydrobenzofuran and levoglucosan were the dominant components in liquid product. Inorganic species enhanced the effect of deoxygenation and dehydrogenation during torrefaction process, resulting in the enrichment of C component in solid products.


Subject(s)
Oryza , Refuse Disposal , Biomass , Water
7.
Bioresour Technol ; 259: 461-464, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29605465

ABSTRACT

The controversial synergistic effect between brown coal and biomass during co-pyrolysis deserves further investigation. This study detailed the oil production from microwave-assisted co-pyrolysis of brown coal (BC) and corn stover (CS) at different CS/BC ratios (0, 0.33, 0.50, 0.67, and 1) and pyrolysis temperatures (500, 550, and 600 °C). The results showed that a higher CS/BC ratio resulted in higher oil yield, and a higher pyrolysis temperature increased oil yield for brown coal and coal/corn mixtures. Corn stover and brown coal showed different pyrolysis characteristics, and positive synergistic effect on oil yield was observed only at CS/BC ratio of 0.33 and pyrolysis temperature of 600 °C. Oils from brown coal mainly included hydrocarbons and phenols whereas oils from corn stover and coal/corn mixtures were dominated by ketones, phenols, and aldehydes. Positive synergistic effects were observed for ketones, aldehydes, acids, and esters whereas negative synergistic effects for hydrocarbons, phenols and alcohols.


Subject(s)
Microwaves , Zea mays , Biofuels , Biomass , Coal , Hot Temperature
8.
Bioresour Technol ; 261: 86-92, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29654998

ABSTRACT

The high concentration of oxygenated compounds in pyrolytic products prohibits the conversion of hemicellulose to important biofuels and chemicals via fast pyrolysis. Herein a dual-catalyst bed of CaO and HZSM-5 was developed to convert acids in the pyrolytic products of xylan to valuable hydrocarbons. Meanwhile, LLDPE was co-pyrolyzed with xylan to supplement hydrogen during the catalysis of HZSM-5. The results showed that CaO could effectively transform acids into ketones. A minimum yield of acids (2.74%) and a maximum yield of ketones (42.93%) were obtained at a catalyst to feedstock ratio of 2:1. The dual-catalyst bed dramatically increased the yield of aromatics. Moreover, hydrogen-rich fragments derived from LLDPE promoted the Diels-Alder reactions of furans and participated in the hydrocarbon pool reactions of non-furanic compounds. As a result, a higher yield of hydrocarbons was achieved. This study provides a fundamental for recovering energy and chemicals from pyrolysis of hemicellulose.


Subject(s)
Hydrocarbons/metabolism , Plastics , Polysaccharides , Biofuels , Catalysis , Hot Temperature
9.
Oncotarget ; 9(4): 5044-5057, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29435161

ABSTRACT

Cancer cell lines are often used in high throughput drug screens (HTS) to explore the relationship between cell line characteristics and responsiveness to different therapies. Many current analysis methods infer relationships by focusing on one aspect of cell line drug-specific dose-response curves (DRCs), the concentration causing 50% inhibition of a phenotypic endpoint (IC50). Such methods may overlook DRC features and do not simultaneously leverage information about drug response patterns across cell lines, potentially increasing false positive and negative rates in drug response associations. We consider the application of two methods, each rooted in nonlinear mixed effects (NLME) models, that test the relationship relationships between estimated cell line DRCs and factors that might mitigate response. Both methods leverage estimation and testing techniques that consider the simultaneous analysis of different cell lines to draw inferences about any one cell line. One of the methods is designed to provide an omnibus test of the differences between cell line DRCs that is not focused on any one aspect of the DRC (such as the IC50 value). We simulated different settings and compared the different methods on the simulated data. We also compared the proposed methods against traditional IC50-based methods using 40 melanoma cell lines whose transcriptomes, proteomes, and, importantly, BRAF and related mutation profiles were available. Ultimately, we find that the NLME-based methods are more robust, powerful and, for the omnibus test, more flexible, than traditional methods. Their application to the melanoma cell lines reveals insights into factors that may be clinically useful.

10.
Bioresour Technol ; 256: 295-301, 2018 May.
Article in English | MEDLINE | ID: mdl-29455097

ABSTRACT

A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization.


Subject(s)
Microwaves , Sewage , Plant Oils , Polyphenols
11.
Oncotarget ; 8(17): 27786-27799, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28212541

ABSTRACT

High-throughput screening (HTS) strategies and protocols have undergone significant development in the last decade. It is now possible to screen hundreds of thousands of compounds, each exploring multiple biological phenotypes and parameters, against various cell lines or model systems in a single setting. However, given the vast amount of data such studies generate, the fact that they use multiple reagents, and are often technician-intensive, questions have been raised about the variability, reliability and reproducibility of HTS results. Assessments of the impact of the multiple factors in HTS studies could arguably lead to more compelling insights into the robustness of the results of a particular screen, as well as the overall quality of the study. We leveraged classical, yet highly flexible, analysis of variance (ANOVA)-based linear models to explore how different factors contribute to the variation observed in a screening study of four different melanoma cell lines and 120 drugs over nine dosages studied in two independent academic laboratories. We find that factors such as plate effects, appropriate dosing ranges, and to a lesser extent, the laboratory performing the screen, are significant predictors of variation in drug responses across the cell lines. Further, we show that when sources of variation are quantified and controlled for, they contextualize claims of inconsistencies and reveal the overall quality of the HTS studies performed at each participating laboratory. In the context of the broader screening study, we show that our analysis can also elucidate the robust effects of drugs, even those within specific cell lines.


Subject(s)
Antinematodal Agents/pharmacology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Melanoma/drug therapy , Analysis of Variance , Antinematodal Agents/therapeutic use , Cell Line, Tumor , Humans , Reproducibility of Results
12.
Waste Manag ; 60: 357-362, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27625179

ABSTRACT

Catalytic fast co-pyrolysis (co-CFP) offers a concise and effective process to achieve an upgraded bio-oil production. In this paper, co-CFP experiments of waste cooking oil (WCO) and tea residual (TR) with HZSM-5 zeolites were carried out. The influences of pyrolysis reaction temperature and H/C ratio on pyrolytic products distribution and selectivities of aromatics were performed. Furthermore, the prevailing synergetic effect of target products during co-CFP process was investigated. Experimental results indicated that H/C ratio played a pivotal role in carbon yields of aromatics and olefins, and with H/C ratio increasing, the synergetic coefficient tended to increase, thus led to a dramatic growth of aromatics and olefins yields. Besides, the pyrolysis temperature made a significant contribution to carbon yields, and the yields of aromatics and olefins increased at first and then decreased at the researched temperature region. Note that 600°C was an optimum temperature as the maximum yields of aromatics and olefins could be achieved. Concerning the transportation fuel dependence and security on fossil fuels, co-CFP of WCO and TR provides a novel way to improve the quality and quantity of pyrolysis bio-oil, and thus contributes bioenergy accepted as a cost-competitive and promising alternative energy.


Subject(s)
Biofuels/analysis , Food-Processing Industry , Industrial Waste/analysis , Waste Management/methods , Camellia sinensis/chemistry , Catalysis , Cooking , Hot Temperature , Plant Leaves/chemistry , Plant Oils/analysis
13.
Bioresour Technol ; 212: 6-10, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27065226

ABSTRACT

In this paper, HZSM-5 catalyst was modified by pre-coked to cover the strong external acid sites by methanol to olefins reaction, and the modified catalysts were then applied to conduct the catalyst fast pyrolysis of mushroom waste for upgraded bio-fuel production. Experiment results showed that the strong external acid sites and specific surface area decreased with pre-coked percentage increasing from 0% to 5.4%. Carbon yields of hydrocarbons increased at first and then decreased with a maximum value of 53.47%. While the obtained oxygenates presented an opposite variation tendency, and the minimum values could be reached when pre-coked percentage was 2.7%. Among the achieved hydrocarbons, toluene and p-xylene were found to be the main products, and the selectivity of p-xylene increased at first and then decreased with a maximum value of 34.22% when the pre-coked percentage was 1.3%, and the selectivity of toluene showed the opposite tendency with a minimum value of 25.47%.


Subject(s)
Agaricales/chemistry , Zeolites/chemistry , Alkenes , Biomass , Catalysis , Coke , Hydrocarbons/analysis , Hydrocarbons/chemistry , Hydrocarbons/metabolism , Toluene/analysis , Toluene/chemistry , Toluene/metabolism , Waste Management/methods , Xylenes
14.
Bioresour Technol ; 189: 30-35, 2015.
Article in English | MEDLINE | ID: mdl-25864028

ABSTRACT

In this study, catalytic fast co-pyrolysis (co-CFP) of corn stalk and food waste (FW) was carried out to produce aromatics using quantitative pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and ZSM-5 zeolite in the hydrogen form was employed as the catalyst. Co-CFP temperature and a parameter called hydrogen to carbon effective ratio (H/C(eff) ratio) were examined for their effects on the relative content of aromatics. Experimental results showed that co-CFP temperature of 600 °C was optimal for the formation of aromatics and other organic pyrolysis products. Besides, H/C(eff) ratio had an important influence on product distribution. The yield of total organic pyrolysis products and relative content of aromatics increased non-linearly with increasing H/C(eff) ratio. There was an apparent synergistic effect between corn stalk and FW during co-CFP process, which promoted the production of aromatics significantly. Co-CFP of biomass and FW was an effective method to produce aromatics and other petrochemicals.


Subject(s)
Biomass , Biotechnology/methods , Food , Gas Chromatography-Mass Spectrometry/methods , Hot Temperature , Hydrocarbons, Aromatic/metabolism , Waste Products/analysis , Catalysis , Zeolites/chemistry
15.
Bioresour Technol ; 185: 62-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25755014

ABSTRACT

The influences of four types of dilute acid washing (H2SO4, HCl, HF, HNO3) on moso bamboo pyrolysis were investigated via pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The effects of acid washings on the inorganics contents and the chemical structure were also analyzed. The results indicated that all the acid washings could effectively remove a large portion of inorganics and disrupt the chemical structure to a certain extent. HCl-washing behaved the best in removing inorganics and had the most marked disruption effect on bamboo structure. Acid washings promoted the bamboo pyrolysis and increased the contents of both phenols and sugars. HCl-washing had the most significant promotion effect on the levoglucosan formation with the absolute peak area increasing from 8.12×10(8) to 1.92×10(9). The absolute peak areas of 2,3-dihydrobenzofuran decreased more or less after acid washings. All the acid washings except H2SO4-washing could significantly increase the absolute peak area of methoxyeugenol.


Subject(s)
Carbohydrates/chemistry , Chromatography, Gas/methods , Glucose/analogs & derivatives , Hydrochloric Acid/chemistry , Phenols/isolation & purification , Sasa/chemistry , Carbohydrates/isolation & purification , Glucose/chemistry , Glucose/isolation & purification , Heating , Phenols/chemistry
16.
Lancet Oncol ; 12(2): 137-43, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21256081

ABSTRACT

BACKGROUND: Neoadjuvant chemotherapy before cystectomy confers a survival benefit in bladder cancer, but it has not been widely adopted since most patients do not benefit and we are at present unable to predict those that do. Since the most important predictor of recurrence after cystectomy is pathologically positive nodes, our aim was to assess techniques that define this stage for the selection of patients for neoadjuvant chemotherapy. METHODS: We developed a gene expression model (GEM) to predict the pathological node status in primary tumour tissue from three independent cohorts of patients who were clinically node negative. From a subset of transcripts detected faithfully by microarrays from both paired frozen and formalin-fixed tissues (32 pairs), we developed both the GEM and cutoffs that identified patient strata with raised risk of nodal involvement by use of two separate training cohorts (90 and 66 patients). We then assessed the GEM and cutoffs to predict node-positive disease in tissues from a phase 3 trial cohort (AUO-AB-05/95; 185 patients). FINDINGS: We developed a 20-gene GEM with an area under the curve of 0·67 (95% CI 0·60-0·75) for prediction of nodal disease at cystectomy in AUO-AB-05/95. The cutoff system identified patients with high relative risk (1·74, 95% CI 1·03-2·93) and low relative risk (0·70, 95% CI 0·51-0·96) of node-positive disease. Multivariate logistic regression showed the GEM predictor was independent of age, sex, pathological stage, and lymphovascular space invasion (coefficient 9·81, 95% CI 1·64-18·00; p=0·019). INTERPRETATION: Selecting patients for neoadjuvant chemotherapy on the basis of risk of node-positive disease has the potential to benefit high-risk patients while sparing other patients toxic effects and delay to cystectomy. FUNDING: US National Cancer Institute (R01CA143971).


Subject(s)
Models, Genetic , Neoplasm Staging/methods , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/physiopathology , Adult , Aged , Aged, 80 and over , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Neoadjuvant Therapy , Patient Care Planning , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...