Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 521
Filter
1.
Bioresour Technol ; : 131083, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972430

ABSTRACT

Algae-mediated nitrogen removal from low carbon vs. nitrogen (C/N) wastewater techniques has garnered significant attention due to its superior autotrophic assimilation properties. This study investigated the ammonium-N removal potential of four algae species from low C/N synthetic wastewater. Results showed that 95 % and 99 % of ammonium-N are eliminated at initial concentrations of 11.05 ±â€¯0.98 mg/L and 42.51 ±â€¯2.20 mg/L with little nitrate and nitrite accumulation. The compositions of secreted algal-derived dissolved organic matter varied as C/N decreased and showed better bioavailability for nitrate-N removal by Pseudomonas sp. SZF15 without pre-oxidation, achieving an efficiency of 99 %. High-throughput sequencing revealed that the aquatic microbial communities, dominated by Scenedesmus, Kalenjinia, and Micractinium, remain relatively stable across different C/N, aligning with the underlying metabolic pathways. These findings may provide valuable insights into the sustainable elimination of multiple nitrogen contaminants from low C/N wastewater.

2.
J Colloid Interface Sci ; 674: 884-893, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955019

ABSTRACT

Silver (Ag) recovery is essential for ecological protection, human health and economic benefits. Effective capture of Ag(I) from wastewater is still challenging due to insufficient accessible sites of adsorbents. Herein, an acyl chloride-mediated strategy is developed to synthesize rhodanine (Rd) modified UiO-66 derivatives for Ag(I) adsorption. Benefitting from the high grafting density of Rd, the optimal Rd-modified UiO-66-NH2 (UiO-66-NH2@20Rd) features an ultra-high uptake capacity (maximum capacity of 923.9 mg·g-1) and selectivity (maximum selectivity coefficient of 1665.52) for Ag(I). Almost 90 % of Ag(I) could be captured in one minute over UiO-66-NH2@20Rd and maintained a removal rate of 98.9 % even after six cycles. Moreover, a fixed-bed column test demonstrates that approximately 21,780 bed volumes of Ag(I) simulated wastewater can be effectively treated, indicating great promise for practical application. Mechanism investigation illustrates that outstanding performance can be attributed to the synergistic effect of Ag(I) adsorption and reduction on dense rhodanine sites. This study highlights that such a general strategy can provide a valuable avenue toward various functional adsorption materials.

3.
Anal Methods ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961688

ABSTRACT

The new generation of gene editing technologies, primarily based on CRISPR/Cas9 and its derivatives, allows for more precise editing of organisms. However, when the editing efficiency is low, only a small fraction of gene fragments is edited, leaving behind minimal traces and making it difficult to detect and evaluate the editing effects. Although a series of technologies and methods have been developed, they lack the ability for precise quantification and quantitative analysis of these products. Digital polymerase chain reaction (dPCR) offers advantages such as high precision and sensitivity, making it suitable for absolute quantification of nucleic acid samples. In the present study, we developed a novel platform for precise quantification of gene editing products based on microfluidic chip-based dPCR. The results indicated that our assay accurately identified different types of edited samples within a variety of different types, including more complex genomic crops such as tetraploid rapeseed and soybean (highly repetitive sequence). The sensitivity of this detection platform was as low as 8.14 copies per µL, with a detection limit of 0.1%. These results demonstrated the superior performance of the platform, including high sensitivity, low detection limit, and wide applicability, enabling precise quantification and assessment of gene editing efficiency. In conclusion, microfluidic chip-based dPCR was used as a powerful tool for precise quantification and assessment of gene editing products.

4.
Phytochemistry ; 225: 114189, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38905919

ABSTRACT

Eight previously undescribed diterpenoids, caesamins A-H (1-8), were separated and identified from the seeds of Caesalpinia minax Hance. Their structures were characterized by extensive spectroscopic data and X-ray crystallographic analysis. Structurally, caesamin A (1) is the first cassane-type diterpenoid with a C23 carbon skeleton containing an unusual isopropyl. Caesamin F (6) represents the first example of cleistanthane diterpenoid from the genus Caesalpinia. Caesamins B (2) and F (6) exhibited inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages with IC50 values of 45.67 ± 0.92 and 42.99 ± 0.24 µM, comparable to positive control 43.69 ± 2.62 µM of NG-Monomethyl-L-arginine. Furthermore, the chemotaxonomic significance of the isolates was discussed.

5.
MedComm (2020) ; 5(6): e571, 2024 Jun.
Article in Catalan | MEDLINE | ID: mdl-38840772

ABSTRACT

Iron overload is common in cardiovascular disease, it is also the factor that drives ferroptosis. Noncoding RNAs play an important role in heart disease; however, their regulatory role in iron overload-mediated ferroptosis remains much unknown. In our study, the iron overload model in mice was constructed through a high-iron diet, and ammonium iron citrate  treatment was used to mimic iron overload in vitro. We found iron overload induced ferroptosis in cardiomyocytes, which was dependent on the high expression of transferrin receptor (TFRC). MiR-31-5p was downregulated during iron overload; it inhibited cardiomyocyte ferroptosis by targeting TFRC. CircPIK3C2A, a highly expressed circRNA in the heart, was upregulated when iron was overloaded. CircPIK3C2A enhanced the expression of TFRC by sponging miR-31-5p and promoted ferroptosis during iron overload. Our results reveal a novel mechanistic insight into noncoding RNA-based ferroptosis and identify the circPIK3C2A/miR-31-5p/TFRC axis as a promising therapeutic target for myocardial damage.

6.
Adv Sci (Weinh) ; : e2402632, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923328

ABSTRACT

Ultralong room-temperature phosphorescent (URTP) materials have attracted wide attention in anti-counterfeiting, optoelectronic display, and bio-imaging due to their special optical properties. However, room-temperature blue phosphorescent materials are very scarce during applications because of the need to simultaneously populate and stabilize high-energy excited states. In this work, a stepwise stiffening chromophore strategy is proposed to suppress non-radiative jump by continuously reducing the internal spin of the chromophore, and successfully developing a series of blue phosphorescent materials. Phosphorescence lifetimes of more than 3 s are achieved, with the longest lifetime reaching 5.44 s and lasting more than 70 s in the naked eye. As far as is know, this is the best result that has been reported. By adjusting the chromophore conjugation, multicolor phosphorescences from cyan to green have been realized. In addition, these chromophores exhibit the same excellent optical properties in urea and polyvinyl alcohmance (PVA). Finally, these materials are successfully applied to luminescent displays.

7.
Fitoterapia ; 177: 106096, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936672

ABSTRACT

Two new ent-labdane diterpenoids, hypoestesins A-B (1-2) and five new labdane diterpenoids, hypopurolides H-L (3-7), were isolated from the aerial parts of Hypoestes purpurea. All of the structures were fully determined based on extensive analysis of 1H, 13C, 2D NMR, and HRESIMS data. The absolute configurations of 1-3 was established through comparing the experimental and calculated ECD curves and the structure of 5 was confirmed by single crystal X-ray diffraction experiment. Compounds 5-7 were unusual C23 labdane diterpenoids having a γ-acetonyl-α, ß-unsaturated γ-lactone unit and each assigned as C-15 epimeric mixture. Furthermore, cytotoxic and anti-inflammatory activities of 3-7 were evaluated. The results showed that 3 had remarkable cytotoxic activity against HL-60, A549, SMMC-7721, MDA-MB-231, and SW480 cancer cell lines with IC50 values ranging from 2.35 to 17.06 µM. Compound 4 showed moderate cytotoxic activity against HL-60 and SMMC-7721 cancer cell lines with IC50 values of 15.12 ± 0.53 and 12.92 ± 0.60 µM, respectively. Furthermore, compound 4 was also found to exhibit inhibitory activity against NO production in RAW 264.7 macrophages with IC50 values of 23.56 ± 0.99 µM, compared to the positive control L-NMMA with an IC50 value of 41.11 ± 1.34 µM.

8.
China CDC Wkly ; 6(19): 418-423, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38854752

ABSTRACT

What is already known on this topic?: In China, there is limited data available on the use and coverage of the non-program, combined diphtheria, tetanus toxoid, acellular pertussis adsorbed, inactivated poliovirus and haemophilus influenzae type b (DTaP-IPV/Hib) pentavalent vaccine, and its role as a substitute for the separately administered standalone program vaccines. What is added by this report?: We evaluated the use and coverage of the pentavalent vaccine in nine provincial-level administrative divisions (PLADs) spanning eastern, central, and western China from 2019 to 2021. Initial use and coverage were low, but demonstrated annual growth albeit with regional and urban-rural discrepancies. The pentavalent vaccine was increasingly substituted for standalone vaccines over the course of this period. What are the implications for public health practice?: Parents in China are increasingly opting to replace the standard program vaccines with voluntarily purchased combination vaccines, particularly the pentavalent vaccine. The development of combination vaccines should thus be promoted in China, as it could enhance utilization and coverage rates, and decrease the economic burden.

9.
Chembiochem ; : e202400257, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847484

ABSTRACT

Nitroreductase (NTR) has long been a target of interest for its important role involved in the nitro compounds metabolism. Various probes have been reported for NTR analysis, but rarely able to distinguish the extracellular NTR from intracellular ones. Herein we reported a new NTR sensor, HCyS-NO2, which was a hemicyanine molecule with one nitro and two sulfo groups attached. The nitro group acted as the reporting group to respond NTR reduction. Direct linkage of nitro group into the hemicyanine π conjugate system facilitated the intramolecular electron transfer (IET) process and thus quenched the fluorescence of hemicyanine core. Upon reduction with NTR, the nitro group was rapidly converted into the hydroxylamino and then the amino group, eliminating IET process and thus restoring the fluorescence. The sulfo groups installed significantly increased the hydrophilicity of the molecule, and introduced negative charges at physiological pH, preventing the diffusion into bacteria. Both gram-negative and gram-positive bacteria were able to turn on the fluorescence of HCyS-NO2, without detectable diffusion into cells, providing a useful tool to probe the extracellular reduction process.

10.
J Health Popul Nutr ; 43(1): 80, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849963

ABSTRACT

BACKGROUND: There is a correlation between nutritional status and treatment outcomes and long-term survival in MHD patients but there is limited research on the relationship between GNRI and IDH. This case-control study aimed to investigate the correlation between Geriatric Nutritional Risk Index (GNRI) and intradialytic hypotension (IDH) in elderly patients undergoing maintenance hemodialysis (MHD). METHODS: This study was carried out on 129 cases of MHD patients with IDH and 258 non-IDH-controls in Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China, between June 2020 and May 2022. Professional researchers collected patients' general information on gender, primary disease, dialysis-related indicators, anthropometric measures, laboratory biochemicals, and GNRI. Logistic regression analysis was used to evaluate the correlation between GNRI and IDH. RESULTS: A total of 385 elderly MHD patients were included. Compared with GNRI Q4 group, the odds ratios for the risk of IDH in GNRI Q3 group, GNRI Q2 group, and GNRI Q1 group of elderly MHD patients were 1.227, 2.196, and 8.350, respectively, showing a significant downward trend (P-trend < 0.05). The area under the curve of GNRI for predicting IDH was 0.839 (95% CI: 0.799-0.879). Between different genders, a decrease in GNRI was closely related to an increase in IDH risk (P for trend < 0.05). CONCLUSIONS: This research shows a significant association between GNRI and the incidence of IDH among elderly MHD patients and has an important warning effect. Encouraging the incorporation of GNRI assessment into the clinical assessment protocols of older patients with MHD may help to improve the nutritional status of those suffering from it and reduce the risk of IDH.


Subject(s)
Geriatric Assessment , Hypotension , Nutritional Status , Renal Dialysis , Humans , Female , Male , Renal Dialysis/adverse effects , Case-Control Studies , Aged , Hypotension/etiology , Hypotension/epidemiology , Geriatric Assessment/methods , Geriatric Assessment/statistics & numerical data , China/epidemiology , Risk Factors , Nutrition Assessment , Risk Assessment , Aged, 80 and over , Middle Aged , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/complications
11.
Antib Ther ; 7(2): 164-176, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38933534

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, escape coronavirus disease 2019 therapeutics and vaccines, and jeopardize public health. To combat SARS-CoV-2 antigenic escape, we developed a rapid, high-throughput pipeline to discover monospecific VHH antibodies and iteratively develop VHH-Fc-VHH bispecifics capable of neutralizing emerging SARS-CoV-2 variants. By panning VHH single-domain phage libraries against ancestral or beta spike proteins, we discovered high-affinity VHH antibodies with unique target epitopes. Combining two VHHs into a tetravalent bispecific construct conferred broad neutralization activity against multiple variants and was more resistant to antigenic escape than the monospecific antibody alone. Following the rise of the Omicron variant, a VHH in the original bispecific construct was replaced with another VHH discovered against the Omicron BA.1 receptor binding domain; the resulting bispecific exhibited neutralization against both BA.1 and BA.5 sublineage variants. A heavy chain-only tetravalent VHH-Fc-VHH bispecific platform derived from humanized synthetic libraries held a myriad of unique advantages: (i) synthetic preconstructed libraries minimized risk of liabilities and maximized discovery speed, (ii) VHH scaffolds allowed for a modular "plug-and-play" format that could be rapidly iterated upon as variants of concern arose, (iii) natural dimerization of single VHH-Fc-VHH polypeptides allowed for straightforward bispecific production and purification methods, and (iv) multivalent approaches enhanced avidity boosting effects and neutralization potency, and conferred more robust resistance to antigenic escape than monovalent approaches against specific variants. This iterative platform of rapid VHH discovery combined with modular bispecific design holds promise for long-term viral control efforts.

12.
Front Plant Sci ; 15: 1386109, 2024.
Article in English | MEDLINE | ID: mdl-38708391

ABSTRACT

Compared to conventional irrigation and fertilization, the Water-fertilizer coupling can significantly enhance the efficiency of water and fertilizer utilization, thereby promoting crop growth and increasing yield. Targeting the challenges of poor crop growth, low yield, and inefficient water and fertilizer utilization in the arid region of northwest China under conventional irrigation and fertilization practices. Therefore, a two-year on-farm experiment in 2022 and 2023 was conducted to study the effects of water-fertilizer coupling regulation on pumpkin growth, yield, water consumption (ET), and water and fertilizer use efficiency. Simultaneously the comprehensive evaluation of multiple objectives was carried out using principal component analysis (PCA) methods, so as to propose an suitable water-fertilizer coupling regulation scheme for the region. The experiment was set up as a two-factor trial using water-fertilizer integration technology under three irrigation volume (W1 = 37.5 mm, W2 = 45.5 mm, W3 = 52.5mm) and three organic fertilizer application amounts (F1 = 3900-300 kg ha-1, F2 = 4800-450 kg·ha-1, F3 = 5700-600 kg·ha-1), with the traditional irrigation and fertilization scheme from local farmers as control treatments (CK). The results indicated that irrigation volume and organic fertilizer application significantly affected pumpkin growth, yield, and water and fertilizer use efficiency (P<0.05). Pumpkin yield increased with increasing irrigation volume. Increasing organic fertilizer levels within a certain range benefited pumpkin plant growth, dry matter accumulation, and yield, however, excessive application beyond a certain level had inhibited effects on those. The increased fertilizer application under the same irrigation volume enhanced the efficiency of water and fertilizer utilization. However excessive irrigation only resulted in inefficient water consumption, reducing the water and fertilizer use efficiency. The Comprehensive evaluation by PCA revealed that the F2W3 treatment outperformed all the others, effectively addressing the triple objectives of increasing production, improving efficiency, and promoting green production. Therefore, F2W3 (Irrigation volume: 52.5 mm; Fertilizer application amounts: 4800-450 kg/ha-1) as a water and fertilizer management scheme for efficient pumpkin production in the arid region of northwest China.

13.
Hepatology ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779918

ABSTRACT

BACKGROUND AND AIMS: Circulating tumor cells (CTCs) are precursors of cancer metastasis. However, how CTCs evade immunosurveillance during hematogenous dissemination remains unclear. APPROACH AND RESULTS: We identified CTC-platelet adhesions by single-cell RNA sequencing and multiplex immunofluorescence of blood samples from multiple cancer types. Clinically, CTC-platelet aggregates were associated with significantly shorter progression-free survival and overall survival in patients with HCC. In vitro, ex vivo, and in vivo assays demonstrated direct platelet adhesions gifted cancer cells with an evasive ability from NK cell killing by upregulating inhibitory checkpoint CD155 (PVR cell adhesion molecule), therefore facilitating distant metastasis. Mechanistically, CD155 was transcriptionally regulated by the FAK/JNK/c-Jun cascade in a platelet contact-dependent manner. Further competition assays and cytotoxicity experiments revealed that CD155 on CTCs inhibited NK-cell cytotoxicity only by engaging with immune receptor TIGIT, but not CD96 and DNAM1, another 2 receptors for CD155. Interrupting the CD155-TIGIT interactions with a TIGIT antibody restored NK-cell immunosurveillance on CTCs and markedly attenuated tumor metastasis. CONCLUSIONS: Our results demonstrated CTC evasion from NK-cell-mediated innate immunosurveillance mainly through immune checkpoint CD155-TIGIT, potentially offering an immunotherapeutic strategy for eradicating CTCs.

14.
Angew Chem Int Ed Engl ; : e202407109, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702296

ABSTRACT

Obtaining information about cellular interactions is fundamental to the elucidation of physiological and pathological processes. Proximity labeling technologies have been widely used to report cellular interactions in situ; however, the reliance on addition of tag molecules typically restricts their application to regions where tags can readily diffuse, while the application in, for example, solid tissues, is susceptible. Here, we propose an "in-situ-tag-generation mechanism" and develop the GalTag technology based on galactose oxidase (GAO) for recording cellular interactions within three-dimensional biological solid regions. GAO mounted on bait cells can in situ generate bio-orthogonal aldehyde tags as interaction reporters on prey cells. Using GalTag, we monitored the dynamics of cellular interactions and assessed the targeting ability of engineered cells. In particular, we recorded, for the first time, the footprints of Bacillus Calmette-Guérin (BCG) invasion into the bladder tissue of living mice, providing a valuable perspective to elucidate the anti-tumor mechanism of BCG.

15.
J Orthop Surg Res ; 19(1): 297, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750541

ABSTRACT

BACKGROUND: One of the most prevalent illnesses of the shoulder is rotator cuff tendinosis, which is also a major contributor to shoulder discomfort and shoulder joint dysfunction. According to statistics, rotator cuff tendinosis occurs in 0.3-5.5% of cases and affects 0.5-7.4% of people annually. It will be necessary to conduct a meta-analysis to evaluate the efficacy of hypertonic glucose proliferation therapy in the treatment of rotator cuff problems. METHODS: The databases Cochrane PubMed, Library, Web of Science and EMbase, are retrieved by the computer. Individuals with rotator cuff lesions in the intervention group were treated with hypertonic dextrose proliferation therapy, whereas individuals in the control condition were treated with a placebo. Outcome markers for rotator cuff lesions patients; Pursuant to studies, the visual analogue scale (VAS) score, the shoulder pain & disability index (SPADI), & other metrics are used to evaluate the effects of hypertonic dextrose proliferation treatment on individuals with rotator cuff diseases. After carefully evaluating the calibre of the literature, data analysis was performed utilising the RevMan 5.3 programme. RESULTS: Meta-analysis finally contained 6 papers. In six investigations, the test & control group's VAS scores improved, with the test team's score considerably outperforming the control team [standardized mean difference (SMD): 1.10; 95% Cl: 0.37,1.83; P < 0.01], shoulder pain and disability index (SPADI) score (SMD:8.13; 95% Cl: 5.34,10.91; P < 0.01), Flexion (SMD:5.73; 95% Cl: 0.99,10.47; P < 0.05), Abduction (SMD:6.49; 95% Cl: 0.66,12.31; P < 0.05), Internal rotation (SMD:-1.74; 95% Cl: -4.25,0.78; P = 0.176) and External rotation (SMD:2.78; 95% Cl: -0.13,5.69; P = 0.062). CONCLUSION: The findings of this study suggest that individuals with rotator cuff injuries may benefit from hypertonic dextrose proliferation treatment based on the visual analogue scale (VAS) score, the Shoulder Pain and Disability Index (SPADI) score, Flexion, & Abduction. These results must, nevertheless, be supported by high-caliber follow-up research.


Subject(s)
Rotator Cuff Injuries , Humans , Rotator Cuff Injuries/drug therapy , Rotator Cuff Injuries/therapy , Treatment Outcome , Glucose Solution, Hypertonic/therapeutic use , Glucose Solution, Hypertonic/administration & dosage , Tendinopathy/drug therapy , Shoulder Pain/drug therapy , Shoulder Pain/etiology , Rotator Cuff
16.
Toxics ; 12(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38787130

ABSTRACT

Untreated or inadequately treated silver-containing wastewater may pose adverse effects on hu-man health and the ecological environment. Currently, significant progress has been made in the treatment of Ag(I) in wastewater using adsorption methods, with adsorbents playing a pivotal role in this process. This paper provides a systematic review of various adsorbents for the recovery and treatment of Ag(I) in wastewater, including MOFs, COFs, transition metal sulfides, metal oxides, biomass materials, and other polymeric materials. The adsorption mechanisms of these materials for Ag(I) are elaborated upon, along with the challenges currently faced. Furthermore, insights into optimizing adsorbents and developing novel adsorbents are proposed in this study.

17.
Anim Nutr ; 17: 408-417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812495

ABSTRACT

A proper dietary electrolyte balance (dEB) is essential to ensure optimal growth performance of piglets. In the low-protein diet, this balance may be affected by the reduction of soybean meal and the inclusion of high levels of synthetic amino acids. The objective of this experiment was to evaluate the optimal dEB of low-protein diets and its impact on the growth performance of piglets. A total of 108 piglets (initial age of 35 d) were randomly divided into 3 groups with 6 replicates of 6 pigs each as follows: low electrolyte diet (LE group; dEB = 150 milliequivalents [mEq]/kg); medium electrolyte diet (ME group; dEB = 250 mEq/kg); high electrolyte diet (HE group; dEB = 350 mEq/kg). Results indicated that the LE and HE diet significantly decreased the average daily gain, average daily feed intake, and crude protein digestibility (P < 0.05) in piglets. Meanwhile, LE diets disrupted the structural integrity of the piglets' intestines and decreased jejunal tight junction protein (occludin and claudin-1) expression (P < 0.05). Additionally, the pH and HCO3- in the arterial blood of piglets in the LE group were lower than those in the ME and HE groups (P < 0.05). Interestingly, the LE diet significantly increased lysine content in piglet serum (P < 0.05), decreased the levels of arginine, leucine, glutamic acid, and alanine (P < 0.05), and inhibited the mammalian target of rapamycin complex 1 (mTORC1) pathway by decreasing the phosphorylation abundance of key proteins. In summary, the dietary electrolyte imbalance could inhibit the activation of the mTORC1 signaling pathway, which might be a key factor in the influence of the dEB on piglet growth performance and intestinal health. Moreover, second-order polynomial (quadratic) regression analysis showed that the optimal dEB of piglets in the low-protein diet was 250 to 265 mEq/kg.

18.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621914

ABSTRACT

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Subject(s)
Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , MicroRNAs , Paeonia , Plant Extracts , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Hep G2 Cells , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Apoptosis , Cell Proliferation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , RNA, Messenger , Luciferases/metabolism , Luciferases/pharmacology , Cell Line, Tumor
19.
Anal Chim Acta ; 1303: 342519, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38609262

ABSTRACT

The gene editing technology represented by clustered rule-interspersed short palindromic repeats (CRISPR)/Cas9 has developed as a common tool in the field of biotechnology. Many gene-edited products in plant varieties have recently been commercialized. However, the rapid on-site visual detection of gene-edited products without instrumentation remains challenging. This study aimed to develop a novel and efficient method, termed the CRISPR/SpRY detection platform, for the rapid screening of CRISPR/Cas9-induced mutants based on CRISPR/SpRY-mediated in vitro cleavage using rice (Oryza sativa L.) samples genetically edited at the TGW locus as an example. We designed the workflow of the CRISPR/SpRY detection platform and conducted a feasibility assessment. Subsequently, we optimized the reaction system of CRISPR/SpRY, and developed a one-pot CRISPR/SpRY assay by integrating recombinase polymerase amplification (RPA). The sensitivity of the method was further verified using recombinant plasmids. The proposed method successfully identified various types of mutations, including insertions, deletions (indels), and nucleotide substitutions, with excellent sensitivity. Finally, the applicability of this method was validated using different rice samples. The entire process was completed in less than an hour, with a limit of detection as low as 1%. Compared with previous methods, our approach is simple to operate, instrumentation-free, cost-effective, and time-efficient. The primary significance lies in the liberation of our developed system from the limitations imposed using protospacer adjacent motif sequences. This expands the scope and versatility of the CRISPR-based detection platform, making it a promising and groundbreaking platform for detecting mutations induced by gene editing.


Subject(s)
Oryza , Oryza/genetics , CRISPR-Cas Systems/genetics , Gene Editing , Biological Assay , Biotechnology , RNA
20.
Phytochemistry ; 222: 114105, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657886

ABSTRACT

Three undescribed cassane diterpenoids, caesalpanins D-F (1-3), and seven known ones were isolated from the seeds of Caesalpinia sappan. Structures and absolute configurations of 1-3 were elucidated based on the extensive spectroscopic analysis, single-crystal X-ray diffraction analysis, and ECD calculations. Structurally, compound 1 was the first example of 18-norcassane diterpenoid and 2 was a rare 20-norcassane diterpenoid having an unusual five-membered oxygen bridge between C-10/C-18. The anti-proliferative activity of 1, 3, and 4-10 against PANC-1 cells (pancreatic ductal adenocarcinoma cell line) was evaluated, and phanginin H (4) was found to exhibit anti-cancer activity with IC50 value of 18.13 ± 0.63 µM. Compound 4 inhibited PANC-1 cell growth by arresting the cell cycle at G2/M phase via regulation of cyclin-dependent kinases, and the self-renewal and metastasis of PANC-1 cells by suppressing cancer cell stemness. Furthermore, compound 4 induced ROS generation and subsequently activated autophagy, which was demonstrated by the formation of autophagic vacuoles and dynamic change of autophagic flux. The induced ROS accumulation resulted in AMPK activation and subsequently regulation of mTORC1 activity and ULK phosphorylation, indicating that 4 triggered autophagy through ROS/AMPK/mTORC1 pathway. These findings suggested that 4 might potentially be an autophagy inducer for the therapy of pancreatic cancer.


Subject(s)
AMP-Activated Protein Kinases , Antineoplastic Agents, Phytogenic , Autophagy , Caesalpinia , Cell Proliferation , Diterpenes , Drug Screening Assays, Antitumor , Mechanistic Target of Rapamycin Complex 1 , Pancreatic Neoplasms , Reactive Oxygen Species , Seeds , Caesalpinia/chemistry , Humans , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Seeds/chemistry , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Structure-Activity Relationship , Dose-Response Relationship, Drug
SELECTION OF CITATIONS
SEARCH DETAIL
...