Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Chem Biol Interact ; 308: 339-349, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31170387

ABSTRACT

Magnolol, the most abundant bioactive constituent of the Chinese herb Magnolia officinalis, has been found with multiple biological activities, including anti-oxidative, anti-inflammatory and enzyme-regulatory activities. In this study, the inhibitory effects and inhibition mechanism of magnolol on human carboxylesterases (hCEs), the key enzymes responsible for the hydrolytic metabolism of a variety of endogenous esters as well as ester-bearing drugs, have been well-investigated. The results demonstrate that magnolol strongly inhibits hCE1-mediated hydrolysis of various substrates, whereas the inhibition of hCE2 by magnolol is substrate-dependent, ranging from strong to moderate. Inhibition of intracellular hCE1 and hCE2 by magnolol was also investigated in living HepG2 cells, and the results showed that magnolol could strongly inhibit intracellular hCE1, while the inhibition of intracellular hCE2 was weak. Inhibition kinetic analyses and docking simulations revealed that magnolol inhibited both hCE1 and hCE2 in a mixed manner, which could be partially attributed to its binding at two distinct ligand-binding sites in each carboxylesterase, including the catalytic cavity and the regulatory domain. In addition, the potential risk of the metabolic interactions of magnolol via hCE1 inhibition was predicted on the basis of a series of available pharmacokinetic data and the inhibition constants. All these findings are very helpful in deciphering the metabolic interactions between magnolol and hCEs, and also very useful for avoiding deleterious interactions via inhibition of hCEs.


Subject(s)
Biphenyl Compounds/metabolism , Carboxylic Ester Hydrolases/metabolism , Lignans/metabolism , Binding Sites , Biocatalysis , Biphenyl Compounds/chemistry , Carboxylic Ester Hydrolases/antagonists & inhibitors , Catalytic Domain , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Hep G2 Cells , Humans , Hydrolysis , Kinetics , Lignans/chemistry , Molecular Docking Simulation
2.
Int J Biol Macromol ; 120(Pt B): 1944-1954, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30268757

ABSTRACT

Human carboxylesterase 1 (hCE1) is a key enzyme responsible for the hydrolysis of a wide range of endogenous and xenobiotic esters, but the highly selective inhibitors against hCE1 are rarely reported. This study aimed to assess the inhibitory effects of natural flavonoids against hCE1 and to find potential specific hCE1 inhibitors. To this end, fifty-eight natural flavonoids were collected and their inhibitory effects against both hCE1 and hCE2 were assayed. Among all tested compounds, nevadensin, an abundant natural constitute from Lysionotus pauciflorus Maxim., displayed the best combination of inhibition potency and selectivity towards hCE1. The inhibition mechanism of nevadensin on hCE1 was further investigated using two site-specific hCE1 substrates including D-luciferin methyl ester (DME) and 2­(2­benzoyloxy­3­methoxyphenyl)benzothiazole (BMBT). Furthermore, docking simulations demonstrated that the binding area of nevadensin on hCE1 was highly overlapped with that of DME but was far away from that of BMBT, which was highly consistent with the inhibition modes of nevadensin. These findings found a natural occurring specific inhibitor of hCE1, which could be served as a lead compound for the development of novel hCE1 inhibitor with improved properties, and also hold great promise for investigating hCE1-ligand interactions.


Subject(s)
Biological Products/pharmacology , Carboxylic Ester Hydrolases/antagonists & inhibitors , Flavones/pharmacology , Biological Products/metabolism , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Flavones/metabolism , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Conformation , Substrate Specificity
3.
Int J Biol Macromol ; 118(Pt B): 2216-2223, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30009906

ABSTRACT

Reduction of lipid absorption has been recognized as an attractive approach for the discovery of new drugs to treat obesity and overweight. The leave extract of Ginkgo biloba has been widely used for the treatment of metabolic diseases (such as hyperlipidemia) in both eastern and western countries, but the bioactive compounds in Ginkgo biloba and the underlying mechanism have not been fully characterized. This study aimed to investigate the inhibition potentials and mechanism of major biflavones from G. biloba on pancreatic lipase (PL), a key target regulating lipid absorption. The results clearly demonstrated that all tested biflavones in G. biloba including isoginkgetin, bilobetin, ginkgetin and sciadopitysin, displayed strong to moderate inhibitory effects on PL with the IC50 values ranging from 2.90 µM to 12.78 µM. Further investigations on both inhibition kinetic analyses and docking simulations demonstrated that isoginkgetin, bilobetin and ginkgetin were potent PL inhibitors (Ki < 2.5 µM), which could create strong interactions with the catalytic triad of PL via hydrogen bonding. These findings provided a new powerful evidence for explaining the hypolipidemic effects of G. biloba, while these newly identified PL inhibitors from G. biloba could serve as lead compounds for the development of biflavonoid-type PL inhibitors.


Subject(s)
Biflavonoids/pharmacology , Enzyme Inhibitors/pharmacology , Ginkgo biloba/chemistry , Lipase/antagonists & inhibitors , Pancreas/enzymology , Animals , Biflavonoids/chemistry , Enzyme Inhibitors/chemistry , Inhibitory Concentration 50 , Kinetics , Lipase/metabolism , Molecular Docking Simulation , Sus scrofa , Thermodynamics
4.
Bioorg Chem ; 80: 577-584, 2018 10.
Article in English | MEDLINE | ID: mdl-30032067

ABSTRACT

Pancreatic lipase (PL), a key enzyme responsible for the hydrolysis of triacylglycerides in the gastrointestinal tract, has been identified as the therapeutic target for the regulation of lipid absorption. In the present study, six major constituents from a famous Chinese herbal medicine Cortex Mori Radicis (also named sangbaipi in Chinese), have been collected and their inhibitory effects on PL have been carefully investigated and well characterized by a fluorescence-based assay. The results clearly demonstrated that all tested bioactive constituents from Cortex Mori Radicis including sanggenone C (SC), sanggenone D (SD), kuwanon C (KC), kuwanon G (KG), morin and morusin displayed strong to moderate inhibitory effects towards PL with the IC50 values ranging from 0.77 µM to 20.56 µM. Further investigations on inhibition kinetics demonstrated that SC, SD, KC and KG functioned as potent and mixed inhibitors against PL-mediated 4-MU oleate hydrolysis, with the Ki values less than 5.0 µM. Furthermore, molecular docking simulations demonstrated that SD (the most potent PL inhibitor from Cortex Mori Radicis) could create strong interaction with Ser152 (the key amino acid in the catalytic triad) of PL via hydrogen bonding. All these findings provided a new powerful evidence for explaining the hypolipidemic effect of Cortex Mori Radicis, also suggested that some abundant natural compounds in this herbal medicine could be served as lead compounds for the development of new PL inhibitors.


Subject(s)
Benzene Derivatives/pharmacology , Benzofurans/pharmacology , Chromones/pharmacology , Drugs, Chinese Herbal/pharmacology , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Lipase/antagonists & inhibitors , Animals , Benzene Derivatives/chemistry , Benzofurans/chemistry , Chromones/chemistry , Drugs, Chinese Herbal/chemistry , Enzyme Inhibitors/chemistry , Flavonoids/chemistry , Lipase/metabolism , Molecular Docking Simulation , Morus/chemistry , Pancreas/enzymology , Swine
5.
Yao Xue Xue Bao ; 52(1): 58-65, 2017 01.
Article in Chinese | MEDLINE | ID: mdl-29911769

ABSTRACT

Carboxylesterase 1 (CE1) is an important serine hydrolase in mammals, which involved in the hydrolysis of a variety of compounds (endogenous substrates like cholesterol and xenobiotic compounds like ester-contain drugs and pesticides). This study aimed to design and develop the fluorescent probe substrates for human carboxylesterase 1 (hCE1), on the basis of the structural features of hCE1 preferred substrates. Four carboxylic esters deriving from BODIPY-8-carboxylic acid were designed and synthesized. After then, reaction phenotyping assays and chemical inhibition assays were used to evaluate the selectivity of these four ester derivatives towards hCE1. Our results clearly demonstrated that the substrate specificity of these ester substrates towards hCE1 would be improved with the decrease of the alcohol group on BODIPY-8-carboxylesters, while BODIPY-8-carboxylesters with small alcohol groups including methyl (BCM) and ethyl (BCE) esters could serve as the ideal probe substrates for hCE1. Given that BCM exhibit rapid hydrolytic rate in hCE1, we further investigate the enzymatic kinetics of this fluorescent probe substrate in both human liver microsomes (HLM) and recombinant hCE1, as well as to explore its potential application in high-throughput screening of hCE1 inhibitors by using HLM as enzyme source. The results showed that the kinetic behaviors and the affinity of BCM in HLM is much closed to those in recombinant hCE1, implying that hCE1 played the key roles in BCM hydrolysis in HLM. Furthermore, the inhibition study demonstrated that BCM could be used for rapid screening and characterization of hCE1 inhibitors, by using HLM to replace recombinant hCE1 as enzyme source.


Subject(s)
Boron Compounds/chemistry , Carboxylic Ester Hydrolases/chemistry , Fluorescent Dyes , Esters , Humans , Hydrolysis , Kinetics , Microsomes, Liver/enzymology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...