Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 26(27): 5770-5775, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38940694

ABSTRACT

In this paper, we described a palladium/norbornene-catalyzed ortho-C-H phosphormethylation of aryl iodides using XCH2P(O)RR', offering a reliable method for the modular synthesis of polysubstituted α-phosphorylated arenes. Alkenylation, hydrogenation, cyanation, methylation, and arylation were all viable termination steps compatible with the reaction. This method demonstrates excellent functional group tolerance and can be extended to the late-stage modification of bioactive molecules. Furthermore, the synthetic transformations of the products demonstrate the practical utility of this reaction.

2.
Chemosphere ; 358: 142192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701862

ABSTRACT

Current human health risk assessments of soil arsenic (As) contamination rarely consider bioaccessibility (IVBA), which may overestimate the health risks of soil As. The IVBA of As (As-IVBA) may differ among various soil types. This investigation of As-IVBA focused As from geological origin in a typical subtropical soil, lateritic red soil, and its risk control values. The study used the SBRC gastric phase in vitro digestion method and As speciation sequential extraction based upon phosphorus speciation extraction method. Two construction land sites (CH and HD sites) in the Pearl River Delta region were surveyed. The results revealed a high content of residual As (including scorodite, mansfieldite, orpiment, realgar, and aluminum arsenite) in the lateritic red soils at both sites (CH: 84.9%, HD: 91.7%). The content of adsorbed aluminum arsenate (CH: 3.24%, HD: 0.228%), adsorbed ferrum arsenate (CH: 8.55%, HD: 5.01%), and calcium arsenate (CH: 7.33%, HD: 3.01%) were found to be low. The bioaccessible As content was significantly positively correlated with the As content in adsorbed aluminum arsenate, adsorbed ferrum arsenate, and calcium arsenate. A small portion of these sequential extractable As speciation could be absorbed by the human body (CH: 14.9%, HD: 3.16%), posing a certain health risk. Adsorbed aluminum arsenate had the highest IVBA, followed by calcium arsenate, and adsorbed ferrum arsenate had the lowest IVBA. The aforementioned speciation characteristics of As from geological origin in lateritic red soil contributed to its lower IVBA compared to other soils. The oxidation state of As did not significantly affect As-IVBA. Based on As-IVBA, the carcinogenic and non-carcinogenic risks of soil As in the CH and HD sites decreased greatly in human health risk assessment. The results suggest that As-IVBA in lateritic red soil should be considered when assessing human health risks on construction land.


Subject(s)
Arsenic , Soil Pollutants , Soil , Arsenic/analysis , Arsenic/chemistry , Humans , Soil Pollutants/analysis , Soil Pollutants/chemistry , Risk Assessment , Soil/chemistry , Environmental Monitoring , Biological Availability , China
3.
J Am Chem Soc ; 145(51): 28233-28239, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38103175

ABSTRACT

By inducing CO2-pulsed discharges within microchannel bubbles and regulating thus-forming plasma microbubbles, we observe high-performance, catalyst-free coformation of hydrogen peroxide (H2O2) and oxalate directly from CO2 and water. With isotope-labeled C18O2 as the feedstock, peaks of H218O16O and H216O2 observed by ex situ surface-enhanced Raman spectra indicate that single-atom oxygen (O) from CO2 dissociations and H2O-derived OH radicals both contribute to H2O2 formation. The global plasma chemistry modeling suggests that high-density, energy-intense electron supply enables high-density CO2- (aq) and HCO2- (aq) formation and their subsequent coupling to produce oxalate. The enhanced solvation of CO2, facilitated by the efficient transport of CxOy ionic species and CO, is demonstrated as a crucial benefit of spark discharges interacting with water at the bubble interface. We expect this plasma microbubble approach to provide a novel power-to-chemical avenue to convert CO2 into valuable H2O2 and oxalic acid platform chemicals, thus leveraging renewable energy resources.

4.
Nat Commun ; 14(1): 818, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36781856

ABSTRACT

Metal-free electrocatalysts represent a main branch of active materials for oxygen evolution reaction (OER), but they excessively rely on functionalized conjugated carbon materials, which substantially restricts the screening of potential efficient carbonaceous electrocatalysts. Herein, we demonstrate that a mesostructured polyacrylate hydrogel can afford an unexpected and exceptional OER activity - on par with that of benchmark IrO2 catalyst in alkaline electrolyte, together with a high durability and good adaptability in various pH environments. Combined theoretical and electrokinetic studies reveal that the positively charged carbon atoms within the carboxylate units are intrinsically active toward OER, and spectroscopic operando characterizations also identify the fingerprint superoxide intermediate generated on the polymeric hydrogel backbone. This work expands the scope of metal-free materials for OER by providing a new class of polymeric hydrogel electrocatalysts with huge extension potentials.

5.
Phys Chem Chem Phys ; 16(39): 21876-81, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25203901

ABSTRACT

A facile approach was developed for preparing defective, self-doped TiO2, which shows remarkable visible light activity in the photocatalytic degradation of RhB and hydrogen liberation from water. Moreover, noble metal was directly deposited onto the TiO2 surface via an in situ redox reaction between surficial Ti(3+) and metal salt. The lack of involvement of foreign reducing agents or stabilizers permits intimate contact between metal nanoparticles and the TiO2 substrate, which ensures the facilitated interfacial charge transfer. The strategy presented in this work may be applied to design other defect and noble metal mediated visible-light-active photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...