Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 364: 128120, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36244603

ABSTRACT

This study investigated the nutrient removal, decarbonization potentials, and bioenergy production (i.e., algal biomass and biogas) between a membrane photobioreactor (MPBR) and a sequencing photobioreactor (SPBR) as the post-treatment process of an anaerobic membrane bioreactor (AnMBR) for municipal wastewater treatment. All photobioreactors without aeration showed favourable performance on AnMBR effluent polishing and bioenergy production. In comparison, MPBRs achieved higher removal efficiencies with 98.4 %-99.1 % NH4-N and 74.8 %-88.4 % PO4-P removal compared to the SPBRs with 41.1 %-82.0 % NH4-N and 39.6 %-72.9 % PO4-P removal. MPBRs enhanced more nutrient utilization (24.9-49.3 g(N)/(m3·d) and 3.4-8.1 g(P)/(m3·d)) and CO2 assimilation (22.9-43.4 g(C)/(m3·d)), and concentrated more microalgae with 1.58-1.98 g/L higher than the SPBRs. Moreover, the MPBR effectively upgraded the biogas from AnMBR with superior methane percentage of 89.4 %-93.4 % due to its better CO2 biofixation. The MPBR, with better carbon, nitrogen and phosphorous removal and bioenergy production, following AnMBR is an attractive decarbonized technology for future sustainable wastewater treatment.


Subject(s)
Microalgae , Water Purification , Photobioreactors , Wastewater , Anaerobiosis , Carbon Dioxide , Biofuels , Nutrients , Biomass
2.
Water Res ; 212: 118098, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35114533

ABSTRACT

Membrane fouling remains a major hindrance to a prevalent application of membrane bioreactor (MBR) for wastewater treatment. Vibrating membrane technology has recently attracted increasing attention in energy-efficient fouling control in MBR compared to air sparging. However, little is known about its fundamental fouling control mechanism and whether the vibrating MBR (VMBR) is a highly effective strategy to control fouling constitutions and fouling sources compared to the conventional air-sparging MBR (ASMBR). This study operated two parallel MBRs with vibrating or air-sparging membrane modules for long-term (215 d) real domestic wastewater treatment. Effects of air sparging and vibration rates on fouling control, fouling development and fouling sources across three fouling stages were comprehensively evaluated. Results showed that the VMBR achieved 70% lower fouling rates compared to the ASMBR due to a remarkable retardation in each fouling stage by membrane vibration. The VMBR significantly reduced over 62.7% of colloidCL and SMPCL within the cake layer (CL) to simultaneously alleviate the reversible and irreversible fouling compared to the ASMBR. The comparatively lower dissolved organic matter (DOM) and biopolymer contents in the cake layer of the VMBR resulted in a slower TMP rise. The main DOMs in the foulants of both MBRs were found in the following order: aromatic protein > soluble microbial by-products > other organics. EPSML from mixed liquor (ML) contributed more DOMs to form membrane foulant than the SMPML in both MBRs. Aromatic proteins and soluble microbial products in the EPSML were markedly reduced in the VMBR but increased in the ASMBR in high-shear phase, demonstrating higher effectiveness in fouling control by membrane vibration. This study provided insights into understanding fouling control, fouling development characteristics and fouling mechanisms between the VMBR and ASMBR, which might guide the researchers and engineers to apply novel vibrating MBRs to better control membrane fouling for holistic wastewater treatment in full scale.


Subject(s)
Membranes, Artificial , Water Purification , Air , Bioreactors , Wastewater
3.
Article in English | MEDLINE | ID: mdl-29843399

ABSTRACT

Salmonella-contaminated well water could cause major infection outbreaks worldwide, thus, it is crucial to understand their persistence in those waters. In this study, we investigated the persistence of Salmonella enterica serovar Typhimurium in 15 well waters from a rural area of Changchun City, China. Results illustrated that the time to reach detection limit (ttd), first decimal reduction time (δ), and the shape parameter (p) ranged from 15 to 80 days, from 5.6 to 66.9 days, and from 0.6 to 6.6, respectively. Principal component analysis showed that ttds of S. Typhimurium were positively correlated with total organic carbon, pH, NH4⁺⁻N, and total phosphate. Multiple stepwise regression analysis revealed that ttds could be best predicted by NH4⁺⁻N and pH. Canonical correspondence analysis and variation partition analysis revealed that NH4⁺⁻N and pH, and the rest of the water parameters, could explain 27.60% and 28.15% of overall variation of the survival behavior, respectively. In addition, ttds were found to be correlated (p < 0.01) with δ and p. Our results showed that the longer survival (>2.5 months) S. Typhimurium could constitute an increased health risk to the local communities, and provided insights into the close linkage between well water quality and survival of S. Typhimurium.


Subject(s)
Drinking Water/microbiology , Salmonella typhimurium/isolation & purification , Water Microbiology , Water Quality , China , Drinking Water/analysis , Drinking Water/chemistry , Humans , Risk Assessment , Rural Health , Salmonella typhimurium/physiology
4.
J Water Health ; 16(2): 300-310, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29676765

ABSTRACT

Waterborne infectious disease outbreak associated with well water contamination is a worldwide public health issue, especially for rural areas in developing countries. In the current study, we characterized 20 well water samples collected from a rural area of southern Changchun city, China, and investigated the survival potential of Escherichia coli O157:H7 in those water samples. The results showed that nitrate and ammonia concentrations in some well water samples exceed the corresponding China drinking water standards, indicating potential contamination by local agricultural farms. Our results also revealed that the average survival time (ttd) of E. coli O157:H7 in all well water samples was 30.09 days, with shortest and longest ttd being 17.95 and 58.10 days, respectively. The ttds were significantly correlated with pH and the ratio of total nitrogen to total phosphorus. In addition, it was found that the shape parameter (p) and first decimal reduction parameter (δ) were negatively (P < 0.05) and positively (P < 0.05) correlated to ttd, respectively. Our study showed that E. coli O157:H7 could survive up to two months in well water, suggesting that this pathogen could constitute a great public health risk.


Subject(s)
Escherichia coli O157/growth & development , Water Microbiology , Water Quality , Water Wells , Agriculture , China
SELECTION OF CITATIONS
SEARCH DETAIL
...