Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 10: e12915, 2022.
Article in English | MEDLINE | ID: mdl-35310169

ABSTRACT

The females and males of dioecious plants have evolved sex-specific characteristics in terms of their morphological and physiological properties. However, the differentiation of phyllosphere microorganism of dioecious plants between parents and hybrid offspring remain largely unexplored. Here, the phyllosphere bacterial and fungal community diversity and composition of female (Populus nigra 'DH5' (PNDH5)), male (P. simonii 'DH4' (PSDH4)), and the hybrid offspring (P. simonii × P. nigra 'DH1' (PSPNDH1), P. simonii × P. nigra 'DH2' (PSPNDH2), P. simonii × P. nigra 'DH3' (PSPNDH3)) were investigated using 16S rDNA/ITS rDNA gene-based Illumina NovaSeq 6000 sequencing. There was considerable variation of plant height, diameter at breast height, leaf area, length of petioles, leaf moisture content, and starch among different samples, and PSDH2 owned the highest plant height, diameter at breast height, and length of petioles. No distinct differences of phyllosphere bacterial community diversity were observed among PSDH4, PNDH5, PSPNDH1, PSPNDH2, and PSPNDH3; while, PSPNDH2 owned the highest fungal Pielou_e index, Shannon index, and Simpson index. Firmicutes and Ascomycota were the predominant phyllosphere bacterial and fungal community at the phylum level, respectively. Bacilli and Gammaproteobacteria were the two most dominant bacterial classes regardless of parent and the hybrid offspring. The predominant phyllosphere fungal community was Dothideomycetes at the class level. The NMDS demonstrated that phyllosphere microbial community obviously differed between parents and offspring, while the phyllosphere microbial community presented some similarities under different hybrid progeny. Also, leaf characteristics contributed to the differentiation of phyllosphere bacterial and fungal communities between parents and hybrid offspring. These results highlighted the discrimination of phyllosphere microorganisms on parent and hybrid offspring, which provided clues to potential host-related species in the phyllosphere environment.


Subject(s)
Microbiota , Mycobiome , Populus , Populus/genetics , Plants/genetics , DNA, Ribosomal
2.
Molecules ; 26(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34885740

ABSTRACT

Both UV and blue light have been reported to regulate the biosynthesis of flavonoids in tea plants; however, the respective contributions of the corresponding regions of sunlight are unclear. Additionally, different tea cultivars may respond differently to altered light conditions. We investigated the responses of different cultivars ('Longjing 43', 'Zhongming 192', 'Wanghai 1', 'Jingning 1' and 'Zhonghuang 2') to the shade treatments (black and colored nets) regarding the biosynthesis of flavonoids. For all cultivars, flavonol glycosides showed higher sensitivity to light conditions compared with catechins. The levels of total flavonol glycosides in the young shoots of different tea cultivars decreased with the shade percentages of polyethylene nets increasing from 70% to 95%. Myricetin glycosides and quercetin glycosides were more sensitive to light conditions than kaempferol glycosides. The principal component analysis (PCA) result indicated that shade treatment greatly impacted the profiles of flavonoids in different tea samples based on the cultivar characteristics. UV is the crucial region of sunlight enhancing flavonol glycoside biosynthesis in tea shoots, which is also slight impacted by light quality according to the results of the weighted correlation network analysis (WGCNA). This study clarified the contributions of different wavelength regions of sunlight in a field experiment, providing a potential direction for slightly bitter and astringent tea cultivar breeding and instructive guidance for practical field production of premium teas based on light regimes.


Subject(s)
Camellia sinensis/growth & development , Flavonoids/biosynthesis , Glycosides/biosynthesis , Plant Shoots/growth & development , Camellia sinensis/radiation effects , Flavonoids/chemistry , Flavonoids/radiation effects , Glycosides/radiation effects , Kaempferols/chemistry , Plant Shoots/radiation effects , Principal Component Analysis , Sunlight , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...