Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Data ; 10(1): 140, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922501

ABSTRACT

A precise Arctic surface air temperature (SAT) dataset, that is regularly updated, has more complete spatial and temporal coverage, and is based on instrumental observations, is critically important for timely monitoring and improving understanding of the rapid change in the Arctic climate. In this study, a new monthly gridded Arctic SAT dataset dated back to 1979 was reconstructed with a deep learning method by combining surface air temperatures from multiple data sources. The source data include the observations from land station of GHCN (Global Historical Climatology Network), ICOADS (International Comprehensive Ocean-Atmosphere Data Set) over the oceans, drifting ice station of Russian NP (North Pole), and buoys of IABP (International Arctic Buoy Programme). The last two are crucial for improving the representation of the in-situ observed temperatures within the Arctic. The newly reconstructed dataset includes monthly Arctic SAT beginning in 1979 and daily Arctic SAT beginning in 2011. This dataset would represent a new improvement in developing observational temperature datasets and can be used for a variety of applications.

4.
Sensors (Basel) ; 21(3)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498699

ABSTRACT

Accurate short-term small-area meteorological forecasts are essential to ensure the safety of operations and equipment operations in the Antarctic interior. This study proposes a deep learning-based multi-input neural network model to address this problem. The newly proposed model is predicted by combining a stacked autoencoder and a long- and short-term memory network. The self-stacking autoencoder maximises the features and removes redundancy from the target weather station's sensor data and extracts temporal features from the sensor data using a long- and short-term memory network. The proposed new model evaluates the prediction performance and generalisation capability at four observation sites at different East Antarctic latitudes (including the Antarctic maximum and the coastal region). The performance of five deep learning networks is compared through five evaluation metrics, and the optimal form of input combination is discussed. The results show that the prediction capability of the model outperforms the other models. It provides a new method for short-term meteorological prediction in a small inland Antarctic region.

5.
Environ Sci Technol ; 54(18): 11344-11355, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32822538

ABSTRACT

Mercury (Hg) is a globally spread trace metal due to its long atmospheric residence time. Yet, our understanding of atmospheric processes (e.g., redox reactions and deposition) driving Hg cycling is still limited, especially in polar regions. The Antarctic continent, by virtue of its remoteness, is the perfect location to investigate Hg atmospheric processes in the absence of significant local anthropogenic impact. Here, we present the first 2 year record (2016-2017) of total suspended particulate mercury (PHg) concentrations along with a year-round determination of an Hg stable isotopic composition in particles collected at Zhongshan Station (ZSS), eastern Antarctic coast. The mean PHg concentration is 21.8 ± 32.1 pg/m3, ranging from 0.9 to 195.6 pg/m3, and peaks in spring and summer. The negative mass-independent fractionation of odd Hg isotopes (odd-MIF, average -0.38 ± 0.12‰ for Δ199Hg) and the slope of Δ199Hg/Δ201Hg with 0.91 ± 0.12 suggest that the springtime isotope variation of PHg is likely caused by in situ photo-oxidation and reduction reactions. On the other hand, the increase of PHg concentrations and the observed odd-MIF values in summer are attributed to the transport by katabatic winds of divalent species derived from the oxidation of elemental Hg in the inland Antarctic Plateau.


Subject(s)
Mercury , Antarctic Regions , Environmental Monitoring , Isotopes , Mercury/analysis , Mercury Isotopes/analysis , Seasons
6.
Chemosphere ; 251: 126399, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32163783

ABSTRACT

In this study, a shallow ice core (12.5 m, called LGB) was drilled at the Lambert Glacial Basin, East Antarctica. The major ion and metal elements were measured at 5-6 cm resolution in this shallow core, which covered the period 1990-2017. Therefore, an annual-resolution record of iron (Fe) concentrations and fluxes were reconstructed in this shallow ice core. Although the Fe data is comparable to previous results, our results emphasized that much more dissolved Fe (DFe) from the Cerro Hudson volcanic event (August 1991) was transported to the East Antarctic ice sheet, in comparison with the Pinatubo volcanic event (June 1991). The aeolian dust may be the primary DFe source during 1990-2017. In particular, the DFe variations may be affected by the biomass burning emissions in two periods (1990-1998 and 2014-2017). While total dissolved Fe (TDFe) variations were controlled by the climatic conditions since 2000 because of the temperature (δ18O) decreasing at East Antarctica. These Fe data will be useful to assess the modern bioavailable Fe release for the Antarctica ice sheet.


Subject(s)
Environmental Monitoring , Ice Cover/chemistry , Iron/analysis , Antarctic Regions , Biomass , Dust/analysis , Iron/chemistry , Metals , Temperature
7.
Sci Rep ; 7: 41096, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28117453

ABSTRACT

In the context of global warming, the question of why Antarctic sea ice extent (SIE) has increased is one of the most fundamental unsolved mysteries. Although many mechanisms have been proposed, it is still unclear whether the increasing trend is anthropogenically originated or only caused by internal natural variability. In this study, we employ a new method where the underlying natural persistence in the Antarctic SIE can be correctly accounted for. We find that the Antarctic SIE is not simply short-term persistent as assumed in the standard significance analysis, but actually characterized by a combination of both short- and long-term persistence. By generating surrogate data with the same persistence properties, the SIE trends over Antarctica (as well as five sub-regions) are evaluated using Monte-Carlo simulations. It is found that the SIE trends over most sub-regions of Antarctica are not statistically significant. Only the SIE over Ross Sea has experienced a highly significant increasing trend (p = 0.008) which cannot be explained by natural variability. Influenced by the positive SIE trend over Ross Sea, the SIE over the entire Antarctica also increased over the past decades, but the trend is only at the edge of being significant (p = 0.034).

8.
J Environ Sci (China) ; 47: 193-200, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27593286

ABSTRACT

At present, continuous observation data for atmospheric nitrous oxide (N2O) concentrations are still lacking, especially in east Antarctica. In this paper, nitrous oxide background concentrations were measured at Zhongshan Station (69°22'25″S, 76°22'14″E), east Antarctica during the period of 2008-2012, and their interannual and seasonal characteristics were analyzed and discussed. The mean N2O concentration was 321.9nL/L with the range of 320.5-324.8nL/L during the five years, and it has been increasing at a rate of 0.29% year(-1). Atmospheric N2O concentrations showed a strong seasonal fluctuation during these five years. The concentrations appeared to follow a downtrend from spring to autumn, and then increased in winter. Generally the highest concentrations occurred in spring. This trend was very similar to that observed at other global observation sites. The overall N2O concentration at the selected global sites showed an increasing annual trend, and the mean N2O concentration in the Northern Hemisphere was slightly higher than that in the Southern Hemisphere. Our result could be representative of atmospheric N2O background levels at the global scale. This study provided valuable data for atmospheric N2O concentrations in east Antarctica, which is important to study on the relationships between N2O emissions and climate change.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Nitrous Oxide/analysis , Antarctic Regions , Climate Change
9.
J Environ Sci (China) ; 46: 190-202, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27521951

ABSTRACT

The spatiotemporal distribution pattern of marine-origin matter on the Antarctica ice sheet was used to study variations in the source regions, transport mechanisms and post-depositional influences. We present data on sea salt ions, sulfur components and stable isotopes from surface and snow pit samples collected along the transect route from Zhongshan Station to Dome A during the austral summer in 2012-2013. A general decreasing trend in the accumulation, sea salt ions and sulfur components occurred with increasing distance from the coast and increasing elevation. However, different sources of the marine components, transport pathways and post-depositional influences were responsible for their different spatial distribution patterns. The marine ions in the coastal snow pit varied seasonally, with higher sea salt ion concentrations in the winter and lower concentrations in the summer; the opposite pattern was found for the sulfur compounds. The sea ice area surrounding Antarctica was the main source region for the deposited sea salt and the open sea water for the sulfur compounds. No significant trends in the marine-origin components were detected during the past 3 decades. Several periods of elevated deposition of sea salt ions were associated with lower temperatures (based on δD and δ(18)O) or intensified wind fields. In comparison to the sea salt ions, the sulfur concentrations exhibited the opposite distribution patterns and were associated with changes in the surrounding sea ice extent.


Subject(s)
Environmental Monitoring , Environmental Pollutants/analysis , Snow/chemistry , Antarctic Regions , Seasons , Sulfur Compounds/analysis
10.
PLoS One ; 10(6): e0126235, 2015.
Article in English | MEDLINE | ID: mdl-26039088

ABSTRACT

BACKGROUND: The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers. METHODOLOGY/PRINCIPAL FINDINGS: The surface albedo based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data over the Hindu Kush, Karakoram and Himalaya (HKH) glaciers is surveyed in this study for the period 2000-2011. The general albedo trend shows that the glaciers have been darkening since 2000. The most rapid decrease in the surface albedo has occurred in the glacial area above 6000 m, which implies that melting will likely extend to snow accumulation areas. The mass-loss equivalent (MLE) of the HKH glacial area caused by surface shortwave radiation absorption is estimated to be 10.4 Gt yr-1, which may contribute to 1.2% of the global sea level rise on annual average (2003-2009). CONCLUSIONS/SIGNIFICANCE: This work probably presents a first scene depicting the albedo variations over the whole HKH glacial area during the period 2000-2011. Most rapidly decreasing in albedo has been detected in the highest area, which deserves to be especially concerned.


Subject(s)
Climate Change/history , Ice Cover , Snow , History, 21st Century
11.
J Environ Sci (China) ; 26(11): 2266-76, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25458681

ABSTRACT

The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world.


Subject(s)
Atmosphere , Hydrogen/analysis , Oxygen Isotopes/analysis , Antarctic Regions , Calibration , Humidity , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...