Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Biosens Bioelectron ; 267: 116779, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39288706

ABSTRACT

In this study, we incorporated nanometal surface energy transfer (NSET) in lateral flow immunoassay (LFIA) and explored the relationship between fluorescence quenching efficiency and detection sensitivity to improve sensitivity of NSET-LFIA system. We developed nine gold nanoparticles (GNPs) with absorption spectrum in the range of 520-605 nm as acceptors and quantum dot microspheres (QDMs) with emission spectrum of 530, 570, and 610 nm as donors. By analyzing the overlap integral area, fluorescence quenching efficiency, and detection sensitivity of 27 donor-acceptor pairs, we observed that the larger overlap integral area led to higher fluorescence quenching efficiency and detection sensitivity. A maximum fluorescence quenching efficiency of 91.0% was obtained from the combination of GNPs at 605 nm and QDMs at 610 nm, achieving the highest detection sensitivity. We developed NSET-LFIA for the detection of T2 toxin with a limit of detection of 0.04 ng/mL, which was 10-times higher than that obtained via conventional GNP-LFIA. NSET-LFIA represents a versatile, ultrasensitive and valuable screening tool for small molecules in real samples.

2.
Proc Natl Acad Sci U S A ; 121(37): e2408297121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39236240

ABSTRACT

Catalytic hydrogenation of CO2 to value-added fuels and chemicals is of great importance to carbon neutrality but suffers from an activity-selectivity trade-off, leading to limited catalytic performance. Herein, the ZnFeAlO4 + SAPO-34 composite catalyst was designed, which can simultaneously achieve a CO2 conversion of 42%, a CO selectivity of 50%, and a C2-C4= selectivity of 83%, resulting in a C2-C4= yield of almost 18%. This superior catalytic performance was found to be from the presence of unconventional electron-deficient tetrahedral Fe sites and electron-enriched octahedral Zn sites in the ZnFeAlO4 spinel, which were active for the CO2 deoxygenation to CO via the reverse water gas shift reaction, and CO hydrogenation to CH3OH, respectively, leading to a route for CO2 hydrogenation to C2-C4=, where the kinetics of CO2 activation can be improved, the mass transfer of CO hydrogenation can be minimized, and the C2-C4= selectivity can be enhanced via modifying the acid density of SAPO-34. Moreover, the spinel structure of ZnFeAlO4 possessed a strong ability to stabilize the active Fe and Zn sites even at elevated temperatures, resulting in long-term stability of over 450 h for this process, exhibiting great potential for large-scale applications.

3.
Talanta ; 280: 126753, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39217712

ABSTRACT

Metamizole (MET) is an antipyretic and analgesic drug, the illegal use of which can result in residues of MET metabolites in edible tissues of animals. In this study, a computational chemistry-assisted hapten screening strategy was used to screen for the optimal immunogenic hapten-A and the optimal coating antigen hapten-G-OVA. A monoclonal antibody capable of recognizing two pharmacologically active metabolites of MET, 4-methylamidinoantipyrine (MAA) and 4-aminoantipyrine (AA), was prepared from the hapten-A. The antibody showed excellent specificity for MAA and AA and almost no cross-reactivity with the pharmacologically inactive metabolites 4-formamidinoantipyrine (FAA) and 4-acetamidinoantipyrine (AAA). An ic-ELISA was developed for the simultaneous detection of MAA and AA in animal-derived food, the limits of detection for MAA ranged from 0.93 to 1.18 µg/kg, while those for AA ranged from 1.74 to 4.61 µg/kg. The recovery rate fell within the range of 82 %-110 %, with a coefficient of variation less than 16.39 %.


Subject(s)
Antibodies, Monoclonal , Dipyrone , Haptens , Haptens/chemistry , Haptens/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Animals , Dipyrone/immunology , Dipyrone/analysis , Dipyrone/chemistry , Mice , Food Contamination/analysis , Enzyme-Linked Immunosorbent Assay/methods , Mice, Inbred BALB C , Food Analysis/methods
4.
IEEE Trans Med Imaging ; PP2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39255086

ABSTRACT

The vessel-wall-volume (VWV) measured based on three-dimensional (3D) carotid artery (CA) ultrasound (US) images can help to assess carotid atherosclerosis and manage patients at risk for stroke. Manual involvement for measurement work is subjective and requires well-trained operators, and fully automatic measurement tools are not yet available. Thereby, we proposed a fully automatic VWV measurement framework (Auto-VWV) using a CA prior-knowledge embedded U-Net (CAP-UNet) to measure the VWV from 3D CA US images without manual intervention. The Auto-VWV framework is designed to improve the repeated VWV measuring consistency, which resulted in the first fully automatic framework for VWV measurement. CAP-UNet is developed to improve segmentation accuracy on the whole CA, which composed of a U-Net type backbone and three additional prior-knowledge learning modules. Specifically, a continuity learning module is used to learn the spatial continuity of the arteries in a sequence of image slices. A voxel evolution learning module was designed to learn the evolution of the artery in adjacent slices, and a topology learning module was used to learn the unique topology of the carotid artery. In two 3D CA US datasets, CAP-UNet architecture achieved state-of-the-art performance compared to eight competing models. Furthermore, CAP-UNet-based Auto-VWV achieved better accuracy and consistency than Auto-VWV based on competing models in the simulated repeated measurement. Finally, using 10 pairs of real repeatedly scanned samples, Auto-VWV achieved better VWV measurement reproducibility than intra- and inter-operator manual measurements.

5.
Nat Commun ; 15(1): 7099, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39154082

ABSTRACT

Iron-based Fischer-Tropsch synthesis (FTS) catalyst is widely used for syngas conversion, but its iron carbide active phase is easily oxidized into Fe3O4 by the water produced during reaction, leading to the deterioration of catalytic performance. Here, we show an efficient strategy for protecting the iron carbide active phase of FTS catalyst by surface hydrophobization. The hydrophobic surface can reduce the water concentration in the core vicinity of catalyst during syngas conversion, and thus inhibit the oxidation of iron species by water, which enhances the C - C coupling ability of catalyst and promotes the formation of long-chain olefins. More significantly, it is unraveled that appropriate shell thickness plays a crucial role in stabilizing the iron carbide active phase without Fe3O4 formation and achieving good catalytic performance.

6.
ChemSusChem ; : e202401279, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107238

ABSTRACT

Aromatic components of C8-C15 are playing indispensable roles in multi-functional properties of jet fuel. Here, we reported the controllable alkylation of benzene with mixed olefins of ethylene and propylene toward C8-C15 aromatic hydrocarbons for jet fuels over the bifunctional Ga/ZSM-5 catalyst. The resultant 2Ga/ZSM-5 exhibited a superior selectivity of 86.4% (yield of 55.5%) to C8-C15 range aromatics, at benzene conversion of 40.3%, ethylene and propylene conversion of 99.5% and 99.2%, respectively. The incorporation of Ga species could effectively weaken the strong acid sites of ZSM-5 and endow 2Ga/ZSM-5 catalyst with appropriate acidity, therefore facilitating the benzene alkylation process and suppressing the undesired hydrogen transfer or aromatization side reactions as well, thus improving the yield of desired C8-C15aromatics for jet fuels. This work provided insight into the development of promising bifunctional catalyst for the oriented transformation of biomass-derived chemicals to aviation fuels.

7.
Food Chem ; 456: 140036, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38878538

ABSTRACT

1-Aminohydantoin (AHD), the residual marker of nitrofurantoin, is usually detected after derivatisation using the derivatisation reagent 2-nitrobenzaldehyde. Avoiding the antibody recognition of the derivatisation reagent is essential for the accurate detection of AHD residues. In this paper, a novel hapten called hapten D was designed, and then, a monoclonal antibody that did not recognise 2-nitrobenzaldehyde was prepared based on this novel hapten. An ultra-sensitive indirect competitive enzyme linked-immunosorbent assay (icELISA) was established under optimal conditions. The 50% inhibition concentration and limit of detection of AHD were 0.056 and 0.0060 ng/mL, respectively, which improved the sensitivity by 9-37-fold compared with the previously reported icELISA methods. The average recovery rates were 88.1%-97.3%, and the coefficient of variation was <8.6%. The accuracy and reliability of the icELISA were verified using liquid chromatography-tandem mass spectrometry. These results demonstrated that the developed icELISA is a useful and reliable tool.


Subject(s)
Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay , Hydantoins , Nitrofurantoin , Antibodies, Monoclonal/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Nitrofurantoin/chemistry , Nitrofurantoin/analysis , Hydantoins/chemistry , Hydantoins/analysis , Animals , Limit of Detection , Food Contamination/analysis , Mice , Haptens/chemistry , Haptens/immunology , Female , Mice, Inbred BALB C
8.
Phys Med Biol ; 69(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38593816

ABSTRACT

Many studies have been carried out on ultrasound computed tomography (USCT) for its ability to offer quantitative measurements of tissue sound speed. Full waveform inversion (FWI) is a technique for reconstructing high-resolution sound speed images by iteratively minimizing the difference between the observed ultrasound data and the synthetic data based on the waveform equation. However, FWI suffers from cycle-skipping, which usually causes FWI convergence at a local minimum. Cycle-skipping occurs when the phase difference between the observed data and the synthetic data exceeds half a cycle. The simplest way to avoid cycle-skipping is to use low-frequency information for reconstruction. Nevertheless, in imaging systems, the response bandwidth of the probe is limited, and reliable low-frequency information often exceeds the response band. Therefore, it is a challenge to perform FWI imaging and avoid cycle-skipping problems without low-frequency information. In this paper, we propose a frequency shift envelope-based global correlation norm (FSEGCN), where an artificial source wavelet with a lower frequency is adopted to calculate synthetic data. FSEGCN compared with FWI, envelope inversion (EI), global correlation norm (GCN), envelope-based global correlation norm (EGCN) through concentric circle phantom without low-frequency information. The experimental results demonstrated the capability of the proposed method to recover the sound speed close to the exact model in the absence of low-frequency information, whereas FWI, EI, GCN, and EGCN cannot. Experiments on phantoms of the human head and calf show that artificial source wavelets can reduce image artifacts and enhance reconstruction robustness, when original low-frequency information is absent.


Subject(s)
Image Processing, Computer-Assisted , Phantoms, Imaging , Ultrasonography , Image Processing, Computer-Assisted/methods , Ultrasonography/methods , Humans , Tomography, X-Ray Computed/methods
9.
Angew Chem Int Ed Engl ; 63(19): e202402053, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38494439

ABSTRACT

Direct synthesis of dimethyl carbonate (DMC) from CO2 plays an important role in carbon neutrality, but its efficiency is still far from the practical application, due to the limited understanding of the reaction mechanism and rational design of efficient catalyst. Herein, abundant electron-enriched lattice oxygen species were introduced into CeO2 catalyst by constructing the point defects and crystal-terminated phases in the crystal reconstruction process. Benefitting from the acid-base properties modulated by the electron-enriched lattice oxygen, the optimized CeO2 catalyst exhibited a much higher DMC yield of 22.2 mmol g-1 than the reported metal-oxide-based catalysts at the similar conditions. Mechanistic investigations illustrated that the electron-enriched lattice oxygen can provide abundant sites for CO2 adsorption and activation, and was advantageous of the formation of the weakly adsorbed active methoxy species. These were facilitating to the coupling of methoxy and CO2 for the key *CH3OCOO intermediate formation. More importantly, the weakened adsorption of *CH3OCOO on the electron-enriched lattice oxygen can switch the rate-determining-step (RDS) of DMC synthesis from *CH3OCOO formation to *CH3OCOO dissociation, and lower the corresponding activation barriers, thus giving rise to a high performance. This work provides insights into the underlying reaction mechanism for DMC synthesis from CO2 and methanol and the design of highly efficient catalysts.

10.
IEEE Trans Med Imaging ; 43(6): 2317-2331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38319753

ABSTRACT

Semi-supervised segmentation is highly significant in 3D medical image segmentation. The typical solutions adopt a teacher-student dual-model architecture, and they constrain the two models' decision consistency on the same segmentation task. However, the scarcity of medical samples can lower the diversity of tasks, reducing the effectiveness of consistency constraint. The issue can further worsen as the weights of the models gradually become synchronized. In this work, we have proposed to construct diverse joint-tasks using masked image modelling for enhancing the reliability of the consistency constraint, and develop a novel architecture consisting of a single teacher but multiple students to enjoy the additional knowledge decoupled from the synchronized weights. Specifically, the teacher and student models 'see' varied randomly-masked versions of an input, and are trained to segment the same targets but reconstruct different missing regions concurrently. Such joint-task of segmentation and reconstruction can have the two learners capture related but complementary features to derive instructive knowledge when constraining their consistency. Moreover, two extra students join the original one to perform an inter-student learning. The three students share the same encoding but different decoding designs, and learn decoupled knowledge by constraining their mutual consistencies, preventing themselves from suboptimally converging to the biased predictions of the dictatorial teacher. Experimental on four medical datasets show that our approach performs better than six mainstream semi-supervised methods. Particularly, our approach achieves at least 0.61% and 0.36% higher Dice and Jaccard values, respectively, than the most competitive approach on our in-house dataset. The code will be released at https://github.com/zxmboshi/DDL.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Supervised Machine Learning , Tomography, X-Ray Computed/methods
11.
Ultrasound Med Biol ; 50(5): 690-702, 2024 05.
Article in English | MEDLINE | ID: mdl-38331698

ABSTRACT

OBJECTIVE: Point-scatterer detection plays a key role in medical ultrasound B-mode imaging. Speckle noise and insufficient spatial resolution are important factors affecting point-scatterer detection. To address this issue, normalized spatial autocorrelation in ultrasound B-mode imaging (NSACB) is proposed. METHODS: First, the acquired data are pre-processed by adding Gaussian white noise (GWN) with a certain signal-to-Gaussian white noise ratio (SGWNR). Next, normalized spatial autocorrelation is applied to the pre-processed data, and the data are divided into several new signals with different spatial lags. Then, the new signals are performed unsigned delay multiply and sum. Finally, the NSACB beamformed data are bandpass filtered by extracting the frequency component around twice the center frequency. Simulated and in vitro experiments were designed for validation. RESULTS: Simulations revealed that the lateral resolution of NSACB measured by the -6-dB mainlobe width can reach as high as 11.11% of delay and sum (DAS), 25.01% of filtered delay multiply and sum (F-DMAS) and 50% of LAG-FDMAS-SCF. The sidelobe level of the NSACB can be reduced at most by 28 dB. Experimental results of simple and complex scatterer phantoms indicate the image resolution of the proposed NSACB can even reach up to 18.76% of DAS, 27.28% of F-DMAS and 14.29% of LAG-FDMAS-SCF. Compared with these methods, the proposed NSACB can reduce the sidelobe level at least by 18 dB. CONCLUSION: Although the proposed method causes loss of the ability to observe hypo-echoic structures, these results suggest future work to determine the ability to detect breast microcalcifications, kidney stones, biopsy needle tracking and other scenarios requiring scatterer detection.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Ultrasonography/methods , Phantoms, Imaging , Signal-To-Noise Ratio
12.
Foods ; 13(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275686

ABSTRACT

In this study, a highly sensitive monoclonal antibody (mAb) was developed for the detection of aflatoxin B1 (AFB1) in maize and feed. Additionally, indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and time-resolved fluorescence immunoassay assay (TRFICA) were established. Firstly, the hapten AFB1-CMO was synthesized and conjugated with carrier proteins to prepare the immunogen for mouse immunization. Subsequently, mAb was generated using the classical hybridoma technique. The lowest half-maximal inhibitory concentration (IC50) of ic-ELISA was 38.6 ng/kg with a linear range of 6.25-100 ng/kg. The limits of detections (LODs) were 6.58 ng/kg and 5.54 ng/kg in maize and feed, respectively, with the recoveries ranging from 72% to 94%. The TRFICA was developed with a significantly reduced detection time of only 21 min, from sample processing to reading. Additionally, the limits of detection (LODs) for maize and feed were determined to be 62.7 ng/kg and 121 ng/kg, respectively. The linear ranges were 100-4000 ng/kg, with the recoveries ranging from 90% to 98%. In conclusion, the development of AFB1 mAb and the establishment of ic-ELISA for high-throughput sample detection, as well as TRFICA for rapid detection presented robust tools for versatile AFB1 detection in different scenarios.

13.
Ultrasonics ; 138: 107212, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38056321

ABSTRACT

Breast ultrasound computed tomography (USCT) has been gradually promoted to clinical application after years of rapid development. Compared with the traditional handheld ultrasound scanning method, the scanning plane of USCT is fixed at the coronal plane, and the scanning path is designed in advance; the acoustic window is not in direct contact with the breast, a lot of coupling medium (usually degassed water is used to fill the gaps between the probe and breast. The clinical application of breast USTC faces challenges: (1) the processes of water degassing, heating, filling, draining, and cleaning prolong the entire scan cycle and reduce patient throughput. (2) The breast is not stabilized and slight movements of the breast may cause motion artifacts in the USCT images. (3) The non-normal incidence of ultrasound into the breast causes reflected and transmitted signals received with a low signal-to-noise ratio (SNR) or even unable to be detected. This article proposes a coupling, stabilizing, and shaping strategy for the clinical application of USCT with a ring array transducer. The solid gel coupling agent (SGCA) is applied for coupling, and a set of SGCA moldings is designed to stabilize and shape the breast during scanning, the breast shape and size which vary from person to person are simplified into several models. The preparation time is reduced to less than 1 min by replacing disposable moldings. The results show that the breast after shaping is close to round in the coronal plane, and slopes of the breast skin are limited in the sagittal and transverse planes, the breast subcutaneous tissue (fat and glands) has a better contrast-to-noise ratio (CNR) and can be better distinguished in the reflection images than that of the breast without shaping. The mean value of the raw beamformed data which represents the reflection signal amplitude of breast subcutaneous tissue after shaping shows 1.5 times that of the breast without shaping, the signal-to-noise ratio (SNR) of the raw transmission signal data after breast shaping is overall higher than that of the breast without shaping. The application of SGCA moldings for breast coupling, stabilizing, and shaping also benefits establishing a standardized scanning process, the standardized diagnosis of the breast lesion, and the localization of breast lesions.


Subject(s)
Tomography, X-Ray Computed , Ultrasonography, Mammary , Female , Humans , Ultrasonography, Mammary/methods , Ultrasonography , Transducers , Water
14.
J Hazard Mater ; 465: 133221, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38103295

ABSTRACT

Contamination in food and the environment with fluoroquinolones (FQs) has become a serious threat to the global ecological balance and public health safety. Ofloxacin (OFL) is one of the most widely utilized sterilization agents in FQs. In the process of monitoring OFL, broad-spectrum monoclonal antibodies (mAb) cannot meet the demand for monospecific detection. Here, a computational chemistry-assisted hapten screening strategy was proposed in this study. Differences in the properties of antigenic epitopes were precisely extracted through a comprehensive comparative study of 16 common FQs molecules and a monospecific and ultrasensitive mAb-3B4 for OFL was successfully prepared. The screened fleroxacin (FLE) hapten was applied in a heterologous competition strategy resulting in a 20-fold improvement in the half inhibitory concentration (IC50) of mAb-3B4 to 0.0375 µg L-1 and cross-reacted only with marbofloxacin (MAR) in regulated FQs. In addition, a single-chain variable fragment (scFv) for OFL was constructed for the first time with an IC50 of 0.378 µg L-1. Molecular recognition mechanism studies validated the reliability of this strategy and revealed the key amino acid sites responsible for OFL specificity and sensitivity. Finally, ic-ELISA and GICA were established for OFL in real samples. This work provides new ideas for the preparation of monospecific mAb and improves the monitoring system of FQs.


Subject(s)
Computational Chemistry , Ofloxacin , Reproducibility of Results , Fluoroquinolones , Enzyme-Linked Immunosorbent Assay , Haptens , Anti-Bacterial Agents/chemistry
15.
Anal Methods ; 15(45): 6229-6238, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37943077

ABSTRACT

To monitor benzoic acid (BA) residues in liquid food samples, a monoclonal antibody (mAb)-based lateral flow immunoassay (LFA) was developed in this study. First, 2-aminobenzoic acid (2-AA), 3-aminobenzoic acid (3-AA), and 4-aminobenzoic acid (4-AA) were conjugated to BSA and used as immunogens. After cell fusion, mAb 6D8 from 4-AA-BSA performed best with an IC50 value of 0.21 mg L-1 using 3-AA-OVA as a heterogeneous antigen, which represented a 3.4-fold improvement compared with the homogeneous antigen 4-AA-BSA. Subsequently, eight kinds of CGNPs with sizes varying from 20.94 nm to 90.00 nm were synthesized for screening the suitable size to develop a sensitive LFA. Finally, a sensitive LFA based on colloidal gold (23.27 nm) nanoparticles was developed for screening BA with a cut-off value of 4 mg L-1, which could meet the requirement of BA detection in milk, Fanta, Sprite, Coca-Cola, and Smart samples.


Subject(s)
Antibodies, Monoclonal , Nanoparticles , Benzoic Acid , Immunoassay , Antigens
16.
Chem Sci ; 14(30): 8206-8213, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37538828

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) with excellent safety, low-cost and environmental friendliness have great application potential in large-scale energy storage systems and thus have received extensive research interest. Layered oxovanadium phosphate dihydrate (VOPO4·2H2O) is an appealing cathode for AZIBs due to the unique layered framework and desirable discharge plateau, but bottlenecked by low operation voltage and unstable cycling. Herein, we propose delta-oxovanadium phosphate (δ-VOPO4) without conventional pre-embedding of metal elements or organics into the structure and paired it into AZIBs for the first time. Consequently, superior to the layered counterpart, δ-VOPO4 exhibits better performance with a prominent discharge voltage of 1.46 V and a higher specific capacity of 122.6 mA h g-1 at 1C (1C = 330 mA g-1), as well as an impressive capacity retention of 90.88 mA h g-1 after 1000 cycles under 10C. By investigation of structure resolution and theoretical calculation, this work well elucidates the structure-function relationship in vanadyl phosphates, offering more chances for exploration of new cathode materials to construct high performance AZIBs.

17.
Phys Med Biol ; 68(17)2023 08 14.
Article in English | MEDLINE | ID: mdl-37494939

ABSTRACT

Full-aperture tomography (FAT) is the major image reconstruction method for a circular ring array (CRA)-based ultrasound computed tomography (USCT) system. The FAT technique requires transferring the reconstruction process from the temporal domain to the spatial domain, during which the imaging resolution of the USCT is degraded by the spatial-domain pulse width (SDPW) of backprojection areas. To tackle this challenge, this study investigates the characteristics of the SDPW and how it degrades the image resolution. We show that the SDPW depends on the frequency of the ultrasound and the position of the transmitting elements, receiving elements and the imaging point. To quantify the deterioration of image resolution associated with the position of the transmitting and receiving elements, a SDPW broadening factor (SDPWBF) is introduced. The results of numerical simulation show a smaller SDPWBFprovides a better reflection image resolution, and the distribution of SDPWBFshows that a shorter distance between the receiving element and the transmitting element yields a smaller SDPWBF. The SDPWBFis therefore able to be an indicator of selecting the signals acquired from the transmitting and receiving elements to perform optimal image resolution. Single-scatterer phantom andinvivoexperiments demonstrate how the SDPWBFaffects the USCT image spatial resolution and signal-to-noise ratio (SNR), and the results agree well with the theoretical predictions.


Subject(s)
Tomography, X-Ray Computed , Ultrasonic Waves , Adult , Female , Humans , Middle Aged , Algorithms , Breast/diagnostic imaging , Phantoms, Imaging , Tomography, X-Ray Computed/methods
18.
Angew Chem Int Ed Engl ; 62(37): e202306786, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37470313

ABSTRACT

Although considerable efforts towards directly converting syngas to liquid fuels through Fischer-Tropsch synthesis have been made, developing catalysts with low CO2 selectivity for the synthesis of high-quality gasoline remains a big challenge. Herein, we designed a bifunctional catalyst composed of hydrophobic FeNa@Si-c and HZSM-5 zeolite, which exhibited a low CO2 selectivity of 14.3 % at 49.8 % CO conversion, with a high selectivity of 62.5 % for gasoline in total products. Molecular dynamic simulations and model experiments revealed that the diffusion of water molecules through hydrophilic catalyst was bidirectional, while the diffusion through hydrophobic catalyst was unidirectional, which were crucial to tune the water-gas shift reaction and control CO2 formation. This work provides a new fundamental understanding about the function of hydrophobic modification of catalysts in syngas conversion.

19.
IEEE Trans Med Imaging ; 42(11): 3348-3361, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37285248

ABSTRACT

Multimodal medical image fusion (MMIF) is highly significant in such fields as disease diagnosis and treatment. The traditional MMIF methods are difficult to provide satisfactory fusion accuracy and robustness due to the influence of such possible human-crafted components as image transform and fusion strategies. Existing deep learning based fusion methods are generally difficult to ensure image fusion effect due to the adoption of a human-designed network structure and a relatively simple loss function and the ignorance of human visual characteristics during weight learning. To address these issues, we have presented the foveated differentiable architecture search (F-DARTS) based unsupervised MMIF method. In this method, the foveation operator is introduced into the weight learning process to fully explore human visual characteristics for the effective image fusion. Meanwhile, a distinctive unsupervised loss function is designed for network training by integrating mutual information, sum of the correlations of differences, structural similarity and edge preservation value. Based on the presented foveation operator and loss function, an end-to-end encoder-decoder network architecture will be searched using the F-DARTS to produce the fused image. Experimental results on three multimodal medical image datasets demonstrate that the F-DARTS performs better than several traditional and deep learning based fusion methods by providing visually superior fused results and better objective evaluation metrics.

20.
Article in English | MEDLINE | ID: mdl-37022371

ABSTRACT

In the field of disease diagnosis where only a small dataset of medical images may be accessible, the light-weight convolutional neural network (CNN) has become popular because it can help to avoid the over-fitting problem and improve computational efficiency. However, the feature extraction capability of the light-weight CNN is inferior to that of the heavy-weight counterpart. Although the attention mechanism provides a feasible solution to this problem, the existing attention modules, such as the squeeze and excitation module and the convolutional block attention module, have insufficient non-linearity, thereby influencing the ability of the light-weight CNN to discover the key features. To address this issue, we have proposed a spiking cortical model based global and local (SCM-GL) attention module. The SCM-GL module analyzes the input feature maps in parallel and decomposes each map into several components according to the relation between pixels and their neighbors. The components are weighted summed to obtain a local mask. Besides, a global mask is produced by discovering the correlation between the distant pixels in the feature map. The final attention mask is generated by combining the local and global masks, and it is multiplied by the original map so that the important components can be highlighted to facilitate accurate disease diagnosis. To appreciate the performance of the SCM-GL module, this module and some mainstream attention modules have been embedded into the popular light-weight CNN models for comparison. Experiments on the classification of brain MR, chest X-ray, and osteosarcoma image datasets demonstrate that the SCM-GL module can significantly improve the classification performance of the evaluated light-weight CNN models by enhancing the ability of discovering the suspected lesions and it is generally superior to state-of-the-art attention modules in terms of accuracy, recall, specificity and F1 score.

SELECTION OF CITATIONS
SEARCH DETAIL