Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(10): 17038-17053, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221535

ABSTRACT

Nanosecond laser-induced grating scattering/spectroscopy (LIGS) technique has been widely applied for measuring thermodynamic parameters such as temperature and pressure in gaseous and liquid media. Recently, femtosecond (fs) laser was demonstrated to induce the grating and develop the fs-LIGS technique for gas thermometry. In this work, we systematically investigated the fs-LIGS signal generation using 35 fs, 800 nm laser pulses at 1 kHz repetition rate in ambient air by varying the pump laser energies, the probe laser powers and the temporal delays between two pump laser pulses. The stability of single-shot fs-LIGS signal was studied, from which we observed that the signal intensity exhibits a significant fluctuation while the oscillation frequency shows a much better stability. A 4.5% precision of the oscillation frequency was achieved over 100 single-shot signals. By using a previously-developed empirical model, the fs-LIGS signals were fitted using nonlinear least-squares fitting method, by which crucial time constants characterizing the signal decay process were extracted and their dependences on the pump laser energy were studied. From the measured results and theoretical analysis, we found that the appropriate range of the overall pump laser energy for reliable fs-LIGS measurements is approximately located within 80 ∼ 300 µJ. The limitations on the accuracy and precision of the fs-LIGS measurements, the origin of destructive influence of plasma generation on the signal generation as well as the electrostriction contribution were also discussed. Our investigations could contribute to a better understanding of the fs-LIGS process and further applications of the technique in single-shot gas thermometry and pressure measurements in various harsh conditions.

2.
Opt Lett ; 47(7): 1859-1862, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363754

ABSTRACT

Gas-phase pressure measurements remain challenging in situations where local pressure rapidly changes or in hostile environments such as turbulent combustion. In this work, we demonstrate the implementation of the recently developed femtosecond laser-induced grating scattering (fs-LIGS) technique for pressure measurement in ambient air. With an overall femtosecond laser pulse energy of 185 µJ, fs-LIGS signals were generated for various gas pressure ranging from 0.2 to 3.0 bar. By theoretically fitting the signal and extracting the time constant of the stationary density modulation damping, the pressure is successfully derived. The derived values were compared to the gauge pressure, which shows a quasi-linear dependence with a slope of 0.96, suggesting the feasibility of the fs-LIGS technique for gas-phase pressure measurements.

3.
Sci Rep ; 11(1): 9829, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33972614

ABSTRACT

Laser-induced grating spectroscopy (LIGS) is for the first time explored in a configuration based on the crossing of two focused femtosecond (fs) laser pulses (800-nm wavelength) and a focused continuous-wave (cw) laser beam (532-nm wavelength). A thermal grating was formed by multi-photon absorption of the fs-laser pulses by [Formula: see text] with a pulse energy around 700 [Formula: see text]J ([Formula: see text] 45 TW/[Formula: see text]). The feasibility of this LIGS configuration was investigated for thermometry in heated nitrogen gas flows. The temperature was varied from room temperature up to 750 K, producing strong single-shot LIGS signals. A model based on the solution of the linearized hydrodynamic equations was used to extract temperature information from single-shot experimental data, and the results show excellent agreement with the thermocouple measurements. Furthermore, the fluorescence produced by the fs-laser pulses was investigated. This study indicates an 8-photon absorption pathway for [Formula: see text] in order to reach the [Formula: see text] state from the ground state, and 8 + 5 photon excitation to reach the [Formula: see text] state of the [Formula: see text] ion. At pulse energies higher than 1 mJ, the LIGS signal was disturbed due to the generation of plasma. Additionally, measurements in argon gas and air were performed, where the LIGS signal for argon shows lower intensity compared to air and [Formula: see text].

4.
Opt Lett ; 44(22): 5477-5480, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730087

ABSTRACT

In this Letter, we have investigated 845 nm lasing generation in atomic oxygen, present in a lean methane-air flame, using two-photon pumping with femtosecond 226 nm laser pulses, particularly focusing on the impact of nanosecond repetitively pulsed glow discharges forcing on the backward lasing signal. Characterizations of the backward lasing pulse, in terms of its spectrum, beam profile, pump pulse energy dependence, and divergence, were conducted to establish the presence of lasing. With plasma forcing of the flame, the backward lasing signal was observed to be enhanced significantly, ∼50%. The vertical concentration profile of atomic oxygen was revealed by measuring the backward lasing signal strength as a function of height in the flame. The results are qualitatively consistent with results obtained with two-dimensional femtosecond two-photon-absorption laser-induced fluorescence, suggesting that the backward lasing technique can be a useful tool for studies of plasma-assisted combustion processes, particularly in geometries requiring single-ended standoff detection.

5.
Opt Express ; 27(18): 25656-25669, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510434

ABSTRACT

A model based on rate-equation analysis has been developed for simulation of two-photon-excited laser-induced fluorescence of carbon monoxide (CO) in the Hopfield-Birge band at 230 nm. The model has been compared with experimental fluorescence profiles measured along focused beams provided by lasers emitting nano-, pico-, and femtosecond pulses. Good quantitative agreement was obtained between simulations and experimental data obtained in premixed CH4/C2H4-air flames. For excitation with femtosecond pulses, experimental and simulated fluorescence signals showed quadratic dependence on laser power under conditions of low laser irradiance, whereas different sublinear dependencies were obtained at higher irradiances due to photoionization. Simulations of CO signal versus femtosecond laser linewidth suggest the strongest signal for a transform-limited pulse, which is sufficiently broad spectrally to cover the CO Q-branch absorption spectrum. Altogether, the developed rate-equation model allows for analysis of two-photon excitation fluorescence to arrange suitable diagnostic configurations and retrieve quantitative data for CO as well as other species in combustion, such as atomic oxygen and hydrogen.

6.
Opt Lett ; 44(9): 2374-2377, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31042226

ABSTRACT

By aiming to establish single-ended standoff combustion diagnostics, bidirectional lasing emissions of atomic hydrogen at 656 nm wavelength have been generated via two-photon resonant excitation by focusing 205 nm femtosecond laser pulses into a premixed CH4/O2 flame. The forward lasing strength is approximately one order of magnitude stronger than that of the backward one, due to the geometry of traveling wave excitation over a 2-mm-long pencil-shaped gain volume and the short gain lifetime of 3.5 ps. The gain coefficient of hydrogen lasing was determined to approximate 52/cm. As for the underlying physics of hydrogen lasing, amplified spontaneous emission (ASE) occurs simultaneously with four-wave mixing (FWM), and ASE dominates in the forward direction, whereas the backward lasing is virtually only ASE.

7.
Opt Lett ; 43(5): 1183-1186, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29489811

ABSTRACT

We report on an observation of bi-directional 656 nm lasing action of atomic hydrogen in a premixed CH4/air flame induced by resonant femtosecond 205 nm two-photon excitation. In particular, the backward-propagating lasing pulse is characterized in the spatial and temporal domains for the sake of a single-ended diagnostic. Its picosecond-scale duration and smooth temporal profile enable spatially resolved detection of hydrogen atoms in the millimeter range, which is successfully demonstrated using two narrow welding flames.

8.
Phys Rev Lett ; 119(20): 203205, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29219339

ABSTRACT

Nitrogen molecules in ambient air exposed to an intense near-infrared femtosecond laser pulse give rise to cavity-free superradiant emission at 391.4 and 427.8 nm. An unexpected pulse duration-dependent cyclic variation of the superradiance intensity is observed when the central wavelength of the femtosecond pump laser pulse is finely tuned between 780 and 820 nm, and no signal occurs at the resonant wavelength of 782.8 nm (2ω_{782.8 nm}=ω_{391.4 nm}). On the basis of a semiclassical recollision model, we show that an interference of dipolar moments of excited ions created by electron recollisions explains this behavior.

9.
Phys Rev Lett ; 115(13): 133203, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26451554

ABSTRACT

We propose a new mechanism to explain the origin of optical gain in the transitions between the excited and ground states of the ionized nitrogen molecule following irradiation of neutral nitrogen molecules with an intense ultrashort laser pulse. An efficient transfer of population to the excited state is achieved via field-induced multiple recollisions. We show that the proposed excitation mechanism must lead to a superradiant emission, a feature that we confirm experimentally.

10.
Phys Rev Lett ; 114(6): 063003, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25723217

ABSTRACT

Filaments produced in air by intense femtosecond laser pulses emit UV luminescence from excited N(2) and N(2)(+) molecules. We report on a strong dependence at high intensities (I≥1.4×10(14) W/cm(2)) of this luminescence with the polarization state of the incident laser pulses. We attribute this effect to the onset of new impact excitation channels from energetic electrons produced with circularly polarized laser pulses above a threshold laser intensity.

11.
Opt Express ; 22(11): 12750-9, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24921470

ABSTRACT

We report on strong backward stimulated emission at 337 nm in nitrogen gas pumped by circularly polarized femtosecond laser pulses at 800 nm. A distinct dependence of the backward UV spectrum on pump laser polarization and intensity is observed, pointing to the occurrence of backward amplified spontaneous emission inside filaments. We attribute the population inversion to inelastic collision between the free electrons produced by the pump laser and neutral N2 molecules. The addition of oxygen molecules is detrimental for the gain, reducing it to near threshold at atmospheric concentration.

12.
Opt Lett ; 39(7): 1725-8, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686589

ABSTRACT

We report on the lasing action of atmospheric air pumped by an 800 nm femtosecond laser pulse with peak power up to 4 TW. Lasing emission at 428 nm increases rapidly over a small range of pump laser power, followed by saturation above ∼1.5 TW. The maximum lasing pulse energy is measured at 2.6 µJ corresponding to an emission power in the MW range, while a maximum conversion efficiency of 3.5×10(-5) is measured at moderate pump pulse energy. The optical gain inside the filament plasma is estimated to be in excess of 0.7/cm. Lasing emission shows a doughnut profile, reflecting the spatial distribution of the pump-generated white-light continuum that acts as a seed for the lasing. We attribute the pronounced saturation to the defocusing of the seed in the plasma amplifying region and to the saturation of the seed intensity.

13.
Opt Express ; 22(24): 29964-77, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25606926

ABSTRACT

Recently, S. Mitryukovskiy et al. presented experimental evidence showing that backward Amplified Spontaneous Emission (ASE) at 337 nm can be obtained from plasma filaments in nitrogen gas pumped by circularly polarized 800 nm femtosecond pulses (Opt. Express, 22, 12750 (2014)). Here, we report that a seed pulse injected in the backward direction can be amplified by ~200 times inside this plasma amplifier. The amplified 337 nm radiation can be either linearly or circularly polarized, dictated by the seeding pulse, which is distinct from the non-polarized nature of the ASE. We performed comprehensive measurements of the spatial profile, optical gain dynamics, and seed pulse energy dependence of this amplification process. These measurements allow us to deduce the pulse duration of the ASE and the amplified 337 nm radiation as well as the corresponding laser intensity inside the plasma amplifier. It indicates that the amplification is largely in the unsaturated regime and that further improvement of laser energy is possible. Moreover, we observed optical gain in plasma created in ambient air. This represents an important step towards future applications exploiting backward lasing for remote atmospheric sensing.


Subject(s)
Air , Lasers , Light , Plasma Gases/chemistry , Remote Sensing Technology , Amplifiers, Electronic , Thermodynamics , Time Factors
14.
Opt Express ; 21 Suppl 4: A704-13, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24104497

ABSTRACT

In this paper, the effect of laser pulse energy on orthogonal double femtosecond pulse laser induced breakdown spectroscopy (LIBS) in air is studied. In the experiment, the energy of the probe pulse is changeable, while the pump pulse energy is held constant. At the same time, a systematic study of the laser induced breakdown spectroscopy signal dependence on the inter-pulse delay between the two pulses is performed. It is noted that the double pulse orthogonal configuration yields 2-32 times signal enhancement for the ionic and atomic lines as compared to the single pulse LIBS spectra when an optimum temporal separation between the two pulses is used, while there is no significant signal enhancement for the molecular lines in the studied range of the delay. It is also noted that the dependence of the enhancement factor for ionic and atomic lines on the inter-pulse delay can be fitted by Gaussian function. Furthermore, the electron temperature obtained by the relative line-to-continuum intensity ratio method was used to explain the LIBS signal enhancement.

15.
Opt Express ; 21(23): 27631-40, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514281

ABSTRACT

Energy exchange between two filament-forming pulses with initially free chirp in air was experimentally studied. It occurs because of the change of delayed nonlinear refractive index, which slightly chirps the incident filament-forming laser pulses. Accompanying energy exchange process, spectral characteristics of output laser pulses shows dramatic blueshift and supercontinuum generation. Nonlinear absorptive effect introduces an inbalance between energy exchange at the negative delays and that at the positive delays, and affects the energy exchange efficiency. These results may provide a more comprehensive understanding of energy exchange process between filament-forming laser pulses.

16.
Opt Express ; 20(8): 8837-47, 2012 Apr 09.
Article in English | MEDLINE | ID: mdl-22513594

ABSTRACT

A plasma grating is formed by two femtosecond filaments, and the influence of probe filament on the plasma grating is shown. By using the plasma grating, the enhancement of the third harmonic (TH) generated from the probe filament is studied, and more than three orders of magnitude enhancement of TH generation is demonstrated as compared with that obtained from a single filament. The dependences of TH generation on the time delay, the spatial period of plasma grating, the relative polarization and the crossing position between the probe beam and the two pump beams are investigated. The spectral broadening of TH generated from the probe filament induced by the interaction between the probe filament and the plasma grating is also studied.

17.
Appl Opt ; 51(12): 2045-50, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22534914

ABSTRACT

A beam of 33 fs laser pulse with peak power of 15-40 GW was employed to explore a convenient method to determine the nonlinear refractive index coefficient of an optical glass. It is rare to investigate nonlinearities of optical glass with such an extreme ultrashort and powerful laser pulse. According to our method, only a single beam and a few experimental apparatuses are necessary to measure the nonlinear refractive index coefficient. The results from our method are in reasonable agreement with the others, which demonstrates that this new method works well, and the nonlinear refractive index coefficient is independent of measuring technology. Meanwhile, according to our results and those obtained by others in different laser power ranges, it seems that the nonlinear refractive index coefficient has a weak dependence on the laser peak power.

SELECTION OF CITATIONS
SEARCH DETAIL
...