Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Commun Signal ; 21(1): 295, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864183

ABSTRACT

BACKGROUND: When ectopically overexpressed, anticancer genes, such as TRAIL, PAR4 and ORCTL3, specifically destroy tumour cells without harming untransformed cells. Anticancer genes can not only serve as powerful tumour specific therapy tools but studying their mode of action can reveal mechanisms underlying the neoplastic transformation, sustenance and spread. METHODS: Anticancer gene discovery is normally accidental. Here we describe a systematic, gain of function, forward genetic screen in mammalian cells to isolate novel anticancer genes of human origin. Continuing with over 30,000 transcripts from our previous study, 377 cell death inducing genes were subjected to screening. FBLN5 was chosen, as a proof of principle, for mechanistic gene expression profiling, comparison pathways analyses and functional studies. RESULTS: Sixteen novel anticancer genes were isolated; these included non-coding RNAs, protein-coding genes and novel transcripts, such as ZNF436-AS1, SMLR1, TMEFF2, LINC01529, HYAL2, NEIL2, FBLN5, YPEL4 and PHKA2-processed transcript. FBLN5 selectively caused inhibition of MYC in COS-7 (transformed) cells but not in CV-1 (normal) cells. MYC was identified as synthetic lethality partner of FBLN5 where MYC transformed CV-1 cells experienced cell death upon FBLN5 transfection, whereas FBLN5 lost cell death induction in MCF-7 cells upon MYC knockdown. CONCLUSIONS: Sixteen novel anticancer genes are present in human genome including FBLN5. MYC is a synthetic lethality partner of FBLN5. Video Abstract.


Subject(s)
Cell Transformation, Neoplastic , Gene Expression Profiling , Animals , Humans , Extracellular Matrix Proteins/metabolism , Genetic Testing , Mammals/metabolism , MCF-7 Cells , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Phosphorylase Kinase , Transcription Factors/genetics
2.
Mol Cell Biol ; 37(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28265004

ABSTRACT

The mRNA-destabilizing factor tristetraprolin (TTP) binds in a sequence-specific manner to the 3' untranslated regions of many proinflammatory mRNAs and recruits complexes of nucleases to promote rapid mRNA turnover. Mice lacking TTP develop a severe, spontaneous inflammatory syndrome characterized by the overexpression of tumor necrosis factor and other inflammatory mediators. However, TTP also employs the same mechanism to inhibit the expression of the potent anti-inflammatory cytokine interleukin 10 (IL-10). Perturbation of TTP function may therefore have mixed effects on inflammatory responses, either increasing or decreasing the expression of proinflammatory factors via direct or indirect mechanisms. We recently described a knock-in mouse strain in which the substitution of 2 amino acids of the endogenous TTP protein renders it constitutively active as an mRNA-destabilizing factor. Here we investigate the impact on the IL-10-mediated anti-inflammatory response. It is shown that the gain-of-function mutation of TTP impairs IL-10-mediated negative feedback control of macrophage function in vitro However, the in vivo effects of TTP mutation are uniformly anti-inflammatory despite the decreased expression of IL-10.


Subject(s)
Feedback, Physiological , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , Mutation/genetics , Tristetraprolin/genetics , Animals , Bone Marrow Cells/metabolism , Cytokines/metabolism , Dual Specificity Phosphatase 1/deficiency , Dual Specificity Phosphatase 1/metabolism , Gene Expression Profiling , Inflammation/genetics , Inflammation Mediators/metabolism , Mice, Inbred C57BL , Transcription, Genetic
3.
J Immunol ; 195(1): 265-76, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26002976

ABSTRACT

In myeloid cells, the mRNA-destabilizing protein tristetraprolin (TTP) is induced and extensively phosphorylated in response to LPS. To investigate the role of two specific phosphorylations, at serines 52 and 178, we created a mouse strain in which those residues were replaced by nonphosphorylatable alanine residues. The mutant form of TTP was constitutively degraded by the proteasome and therefore expressed at low levels, yet it functioned as a potent mRNA destabilizing factor and inhibitor of the expression of many inflammatory mediators. Mice expressing only the mutant form of TTP were healthy and fertile, and their systemic inflammatory responses to LPS were strongly attenuated. Adaptive immune responses and protection against infection by Salmonella typhimurium were spared. A single allele encoding the mutant form of TTP was sufficient for enhanced mRNA degradation and underexpression of inflammatory mediators. Therefore, the equilibrium between unphosphorylated and phosphorylated TTP is a critical determinant of the inflammatory response, and manipulation of this equilibrium may be a means of treating inflammatory pathologies.


Subject(s)
Macrophages/immunology , Mutation , RNA, Messenger/immunology , Salmonella Infections, Animal/immunology , Tristetraprolin/immunology , Alanine/genetics , Alanine/metabolism , Amino Acid Substitution , Animals , Cell Line , Cytokines/antagonists & inhibitors , Cytokines/genetics , Cytokines/immunology , Female , Gene Expression , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphorylation , Primary Cell Culture , RNA Stability , RNA, Messenger/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/pathology , Salmonella typhimurium/immunology , Serine/genetics , Serine/metabolism , Tristetraprolin/genetics
4.
Br J Pharmacol ; 165(4b): 1124-36, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21718312

ABSTRACT

BACKGROUND AND PURPOSE: It is thought that the anti-inflammatory effects of glucocorticoids (GCs) are largely due to GC receptor (GR)-mediated transrepression of NF-κB and other transcription factors, whereas side effects are caused by activation of gene expression (transactivation). Selective GR modulators (SGRMs) that preferentially promote transrepression should retain anti-inflammatory properties whilst causing fewer side effects. Contradicting this model, we found that anti-inflammatory effects of the classical GC dexamethasone were partly dependent on transactivation of the dual specificity phosphatase 1 (DUSP1) gene. We wished to determine whether anti-inflammatory effects of SGRMs are also mediated by DUSP1. EXPERIMENTAL APPROACH: Dissociated properties of two SGRMs were confirmed using GR- and NF-κB-dependent reporters, and capacity to activate GC-responsive elements of the DUSP1 gene was tested. Effects of SGRMs on the expression of DUSP1 and pro-inflammatory gene products were assessed in various cell lines and in primary murine Dusp1(+/+) and Dusp1(-/-) macrophages. KEY RESULTS: The SGRMs were able to up-regulate DUSP1 in several cell types, and this response correlated with the ability of the compounds to suppress COX-2 expression. Several anti-inflammatory effects of SGRMs were ablated or significantly impaired in Dusp1(-/-) macrophages. CONCLUSIONS AND IMPLICATIONS: Like dexamethasone, SGRMs appear to exert anti-inflammatory effects partly via the up-regulation of DUSP1. This finding has implications for how potentially therapeutic novel GR ligands are identified and assessed.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzofurans/pharmacology , Benzoxazines/pharmacology , Dual Specificity Phosphatase 1/metabolism , Pentanols/pharmacology , Quinolines/pharmacology , Receptors, Glucocorticoid/agonists , Animals , Bone Marrow Cells/cytology , Cell Line , Cell Line, Tumor , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Dexamethasone , Dual Specificity Phosphatase 1/deficiency , Dual Specificity Phosphatase 1/genetics , Glucocorticoids , HeLa Cells , Humans , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Knockout , NF-kappa B/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...