Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Eur Urol Focus ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38724341

ABSTRACT

The diagnosis of postchemotherapy residual masses in testicular cancer must be based on the integration of clinical, imaging, and serology tests. Further validation is needed for novel biomarkers.

2.
ACS Appl Mater Interfaces ; 16(17): 22547-22557, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38628112

ABSTRACT

Soft actuators with stimuli-responsive and reversible deformations have shown great promise in soft robotics. However, some challenges remain in existing actuators, such as the materials involved derived from nonrenewable resources, complex and nonscalable preparation methods, and incapability of complex and programmable deformation. Here, a biobased ink based on cuttlefish ink nanoparticles (CINPs) and cellulose nanofibers (CNFs) was developed, allowing for the preparation of biodegradable patterned actuators by direct ink writing technology. The hybrid CNF/CINP ink displays good rheological properties, allowing it to be accurately printed on a variety of flexible substrates. A bilayer actuator was developed by printing an ink layer on a biodegradable poly(lactic acid) film using extrusion-based 3D printing technology, which exhibits reversible and large bending behavior under the stimuli of humidity and light. Furthermore, programmable and reversible folding and coiling deformations in response to stimuli have been achieved by adjusting the ink patterns. This work offers a fast, scalable, and cost-effective strategy for the development of biodegradable patterned actuators with programmable shape-morphing.

3.
ACS Nano ; 17(22): 23032-23045, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37939309

ABSTRACT

Untethered soft robots have attracted growing attention due to their safe interaction with living organisms, good flexibility, and accurate remote control. However, the materials involved are often nonbiodegradable or are derived from nonrenewable resources, leading to serious environmental problems. Here, we report a biomass-based multistimuli-responsive actuator based on cuttlefish ink nanoparticles (CINPs), wood-derived cellulose nanofiber (CNF), and bioderived polylactic acid (PLA). Taking advantage of the good photothermal conversion performance and exceptionally hygroscopic sensitivity of the CINPs/CNF composite (CICC) layer and the opposite thermally induced deformation behavior between the CICC layer and PLA layer, the soft actuator exhibits reversible deformation behaviors under near-infrared (NIR) light, humidity, and temperature stimuli, respectively. By introducing patterned or alignment structures and combining them with a macroscopic reassembly strategy, diverse programmable shape-morphing from 2D to 3D such as letter-shape, coiling, self-folding, and more sophisticated 3D deformations have been demonstrated. All of these deformations can be successfully predicted by finite element analysis (FEA) . Furthermore, this actuator has been further applied as an untethered grasping robot, weightlifting robot, and climbing robot capable of climbing a vertical pole. Such actuators consisting entirely of biodegradable materials will offer a sustainable future for untethered soft robots.

4.
Small ; 19(50): e2304946, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37594725

ABSTRACT

The thriving 5G communication technology leads to the high demand for EMI shielding materials and thermal management materials. Particularly, portable thermal-sensitive electronic devices have more stringent requirements for thermal insulation performances. In most cases, ultrathin EMI shielding materials integrated with ultralow thermal conductivity are not easy to be achieved. To overcome this obstacle, dual protective porous composite films based on Ti3 C2 Tx MXene and polyimide are fabricated by sacrificing polymethyl methacrylate (PMMA) templates. By optimizing the contact thermal resistance and Kapitza resistance, the composite film presents superior thermal insulation performances with a thermal conductivity of 0.0136 W m-1 K-1 . Moreover, the hybrid porous film maintains superior EMI shielding effectiveness of 63.0 dB and high SSE/t of 31651.2 dB cm2 g-1 . Nevertheless, the excellent active and passive heating ability based on Joule heating and photothermal conversion makes the composite film an ideal portable material for thermal management. This work sheds light on designing thermal management materials and EMI shielding materials for cutting-edge electronic devices.

5.
ACS Appl Mater Interfaces ; 15(30): 36477-36488, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37477612

ABSTRACT

Developing highly water-stable zeolitic imidazolate frameworks (ZIFs) for visible-light-driven photocatalytic hydrolysis is important and challenging. Herein, the Type II heterojunction catalyst Mn0.5Cd0.5S@ZIF-8 and its derivatives (including MCS@ZIF-8-Mn, MCS@ZIF-8-Br, and MCS@ZIF-8-MB) were successfully constructed using a facile strategy. Through dual postsynthetic ligand and cation exchange (PSE) treatments of Mn(Ac)2·4H2O and 4-bromo-1H-imidazole for ZIF-8, the hydrogen production efficiency of the MCS@ZIF-8-MB heterojunction catalyst can reach 5.450 mmol·g-1·h-1 and remain at 97.11% after 9 h of the stability test. Construction of heterojunctions can effectively improve the hydrogen production performance of Mn0.5Cd0.5S while maintaining excellent water stability. X-ray photoelectron spectroscopy results show that upon successful construction of the MCS@ZIF-8-MB heterojunction an interface forms between the surface of MCS and ZIF-8-MB, effectively weakening the photocorrosion of MCS. Density functional theory calculations also indicate that the induction of Mn can increase the electronic states of p and d orbitals near the Fermi level of ZIF-8, suggesting that Mn(II) attracts more electrons than Zn(II). This provides more powerful theoretical evidence for the electron cloud shift from the electron donor S2- to Mn2+.

6.
IEEE Trans Med Imaging ; 42(11): 3408-3419, 2023 11.
Article in English | MEDLINE | ID: mdl-37342952

ABSTRACT

Surgical instrument segmentation is of great significance to robot-assisted surgery, but the noise caused by reflection, water mist, and motion blur during the surgery as well as the different forms of surgical instruments would greatly increase the difficulty of precise segmentation. A novel method called Branch Aggregation Attention network (BAANet) is proposed to address these challenges, which adopts a lightweight encoder and two designed modules, named Branch Balance Aggregation module (BBA) and Block Attention Fusion module (BAF), for efficient feature localization and denoising. By introducing the unique BBA module, features from multiple branches are balanced and optimized through a combination of addition and multiplication to complement strengths and effectively suppress noise. Furthermore, to fully integrate the contextual information and capture the region of interest, the BAF module is proposed in the decoder, which receives adjacent feature maps from the BBA module and localizes the surgical instruments from both global and local perspectives by utilizing a dual branch attention mechanism. According to the experimental results, the proposed method has the advantage of being lightweight while outperforming the second-best method by 4.03%, 1.53%, and 1.34% in mIoU scores on three challenging surgical instrument datasets, respectively, compared to the existing state-of-the-art methods. Code is available at https://github.com/SWT-1014/BAANet.


Subject(s)
Robotic Surgical Procedures , Motion , Water , Surgical Instruments , Image Processing, Computer-Assisted
7.
Mater Horiz ; 10(6): 2262-2270, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37021627

ABSTRACT

Acid rain is a worldwide problem because of the emission of acidic gases into the atmosphere, leading to the acidification of first-order streams and aggravation of fresh water shortage. Therefore, it is of great importance to develop an environmentally friendly method for removing acid from water. Herein, an advanced technology that can achieve aqueous acid purification using solar energy is realized with Ti3C2Tx MXene/polyaniline (PANI) hybrid non-woven fabrics (MPs) through interfacial solar vapor generation, with PANI acting as an acid absorber through the doping process. Benefiting from the porous structure and crumpled micro-surface of MPs, a high evaporation rate of 2.65 kg m-2 h-1 with an efficiency of 93.7% can be achieved under one-sun illumination. Moreover, MPs present an even higher evaporation rate of 2.83 kg m-2 h-1 in high concentration aqueous acid and can generate clean water with a pH higher than 6.5. More importantly, thanks to the unique reversible doping process of PANI, when used as an aqueous acid purifier, MPs show good stability and reusability after dedoping. Our work sheds light on an efficient strategy for dealing with aqueous acid and acid rain.

8.
Materials (Basel) ; 15(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36079243

ABSTRACT

A novel co-catalyst system under visible-light irradiation was constructed using high-purity metal and alloy mesh and a Mn0.5Cd0.5S photocatalyst with a narrow band gap (1.91 eV) prepared by hydrothermal synthesis. The hydrogen production rate of Mn0.5Cd0.5S changed from 2.21 to 6.63 mmol·(g·h)-1 with the amount of thioacetamide, which was used as the sulphur source. The introduction of Ag, Mo, Ni, Cu, and Cu-Ni alloy meshes efficiently improved the H2 production rate of the co-catalyst system, especially for the Ni mesh. The improvement can reach an approximately six times greater production, with the highest H2 production rate being 37.65 mmol·(g·h)-1. The results showed that some bulk non-noble metal meshes can act as good or better than some noble metal nanoparticles deposited on the main photocatalyst for H2 evolution due to the promotion of photoinduced electron transfer, increase in redox reaction sites, and prevention of the recombination of carriers.

9.
J Ethnopharmacol ; 290: 115047, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35122976

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Guilingji (GLJ), which has been used to treat male diseases in China for centuries, contains 28 Chinese herbs and was previously established as an effective treatment for male sexual dysfunction. However, its mechanism of action remains unclear. AIM OF THE STUDY: To explore the efficacy and mechanism of action of GLJ in improving senile sexual dysfunction (SSD) in aging rats. MATERIALS AND METHODS: An aging rat model of SSD was induced by the subcutaneous injection of d-galactose (300 mg⋅kg-1) and used to analyse the effects of GLJ (different concentrations of 37.5, 75, and 150 mg⋅kg-1) on the mating of aging rats. At the end of the 8th week, histopathological analysis of testicular tissues, assessment of the hypothalamic-pituitary-gonadal (HPG) axis hormone levels in serum or brain, and metabonomics analysis of the brain and testicular tissue with liquid chromatography-mass spectrometry was performed to explore the mechanism of action of GLJ. RESULT: After treatment with GLJ, the mount and ejaculation latency levels were increased in the treatment group than those in model group (P < 0.05), moreover, the testicular morphology was improved. Gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) levels in rats were also improved significant (P < 0.05) compared with those in the model group. Furthermore, the metabonomics results in the testicular and brain tissue showed that GLJ improved SSD by adjusting amino acid and lipid metabolism. CONCLUSION: This study integrated the complementary metabolic profiles of the target tissues. GLJ might affect SSD rats by regulating amino acid and lipid metabolism and may modulate sensitivity to the signaling pathway in the HPG axis. This study provides an essential basis for the broad clinical application of GLJ.


Subject(s)
Aging/pathology , Brain/drug effects , Drugs, Chinese Herbal/pharmacology , Sexual Behavior, Animal/drug effects , Sexual Dysfunction, Physiological/pathology , Testis/drug effects , Amino Acids/drug effects , Amino Acids/metabolism , Animals , Disease Models, Animal , Female , Gonadotropin-Releasing Hormone/drug effects , Lipid Metabolism/drug effects , Luteinizing Hormone/drug effects , Male , Metabolomics , Rats , Rats, Sprague-Dawley
10.
J Biomed Nanotechnol ; 17(5): 873-888, 2021 05 01.
Article in English | MEDLINE | ID: mdl-34082873

ABSTRACT

Tissue engineering is a promising approach for the treatment of chronic lower back pain (LBP) caused by intervertebral disc degeneration (IDD) resulting from degeneration and inflammation of annulus fibrosus (AF) tissue. However, scaffold with an anti-inflammatory effect on AF cells has not been reported. In this study, we fabricated a polylactide-glycolide (PLGA)/poly-ε-caprolactone (PCL)Zdextran (DEX) composite membrane loaded with plastrum testudinis extract (PTE), a Traditional Chinese Medicine herbal extract, via electrospinning. The membranes were characterized by mechanical measurements and scanning electron microscopy (SEM). Using an in vitro inflammation model induced by interleukin (IL)-1ß, the cytocompatibility and anti-inflammatory effects of the composites were investigated by CCK-8 assay and flow cytometry. Potential regulatory mechanisms were examined by RT-qPCR and Western blotting. The results showed that the P10P8D2 (PLGA 10 g, PCL 8 g, DEX 2 g) composite nanofiber membrane exhibited the most uniform diameter distribution, best mechanical properties, a moderate degradation rate, and the best cytocompatibility characteristics. The optimal concentration of PTE was 120 µg/mL. Importantly, P10P8D2 combined with PTE exhibited anti-inflammatory and cell proliferation promotion effects. Moreover, the NF-κBB/NLRP3/IL-ß signaling pathway was inactivated. Our findings suggested that the nanofiber membrane composed of P10P8D2 and PTE has anti-inflammatory and pro-proliferation effects on AF cells. It may provide an effective strategy for AF tissue regeneration.


Subject(s)
Annulus Fibrosus , Nanofibers , Anti-Inflammatory Agents/pharmacology , Caproates , Dextrans , Lactones , Plant Extracts , Polyesters , Tissue Engineering , Tissue Extracts , Tissue Scaffolds
11.
Sensors (Basel) ; 19(1)2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30586875

ABSTRACT

Human activity recognition (HAR) based on sensor data is a significant problem in pervasive computing. In recent years, deep learning has become the dominating approach in this field, due to its high accuracy. However, it is difficult to make accurate identification for the activities of one individual using a model trained on data from other users. The decline on the accuracy of recognition restricts activity recognition in practice. At present, there is little research on the transferring of deep learning model in this field. This is the first time as we known, an empirical study was carried out on deep transfer learning between users with unlabeled data of target. We compared several widely-used algorithms and found that Maximum Mean Discrepancy (MMD) method is most suitable for HAR. We studied the distribution of features generated from sensor data. We improved the existing method from the aspect of features distribution with center loss and get better results. The observations and insights in this study have deepened the understanding of transfer learning in the activity recognition field and provided guidance for further research.


Subject(s)
Biosensing Techniques , Human Activities , Monitoring, Physiologic/methods , Wearable Electronic Devices , Algorithms , Deep Learning , Humans , Machine Learning , Neural Networks, Computer
12.
Fa Yi Xue Za Zhi ; 26(4): 285-6, 2010 Aug.
Article in Chinese | MEDLINE | ID: mdl-20967958

ABSTRACT

OBJECTIVE: To study the effectiveness of direct amplification with PowerPlex 16 HS system for DNA detection in three conventional materials: fresh blood, oral swab, and cigarette butt. METHODS: The genetic data of 11 samples of fresh blood, 10 samples of oral swab and 10 samples of cigarette butts were analyzed with PowerPlex 16 HS kit. The result was statistically analyzed. RESULTS: Success rate of whole genetic map test in fresh blood and oral swab samples was 100%. Success rate in cigarette butt samples was 90%. CONCLUSION: Direct amplification with PowerPlex 16 HS system is effective method to three types of conventional evidence material including fresh blood, oral swab and cigarette butt.


Subject(s)
DNA Fingerprinting/methods , DNA/analysis , Nucleic Acid Amplification Techniques/methods , Tandem Repeat Sequences , Blood Stains , DNA/genetics , Forensic Genetics/methods , Humans , Polymerase Chain Reaction/methods , Saliva/metabolism , Sensitivity and Specificity , Nicotiana
SELECTION OF CITATIONS
SEARCH DETAIL
...