Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 5): 127146, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37778581

ABSTRACT

There is a great demand for the fabrication of soft electronics using hydrogels due to their biomimetic structures and good flexibility. However, conventional hydrogels have poor mechanical properties, which restricts their applications as stretchable sensors. Herein, a facile one-step strategy is proposed to fabricate tough and conductive hydrogels by making use of the graftability of carboxymethyl chitosan without extra conductive matter and crosslinking agent. The obtained polyacrylamide/carboxymethyl chitosan composite hydrogels possess outstanding transmittance and excellent mechanical performances, with tensile breaking stress of 630 kPa, breaking strain of 4560 %, toughness of 8490 kJ/m3. These hydrogels have low modulus of 5-20 kPa, fast recoverability after unloading, high conductivity of ∼0.85 S/m without the addition of other conductive substances and good biocompatibility. The ionic conductivity of the gels originates from the counterions of carboxymethyl chitosan, affording the hydrogels as resistive-type sensors. The resultant hydrogel sensors demonstrate a broad strain window (0.12-1500 %), excellent linear response, high sensitivity with the gauge factor reaching 11.72, and great durability, capable of monitoring diverse human motions. This work provides a new strategy to develop stretchable conductive hydrogels with promising applications in the fields of artificial intelligence and flexible electronics.


Subject(s)
Chitosan , Humans , Chitosan/chemistry , Artificial Intelligence , Hydrogels/chemistry , Electric Conductivity
2.
Acta Biomater ; 169: 243-255, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37572980

ABSTRACT

Despite 3D bioprinting having emerged as an advanced method for fabricating complex in vitro models, developing suitable bioinks that fulfill the opposing requirements for the biofabrication window still remains challenging. Although naturally derived hydrogels can better mimic the extracellular matrix (ECM) of numerous tissues, their weak mechanical properties usually result in architecturally simple shapes and patchy functions of in vitro models. Here, this limitation is addressed by a peptide-dendrimer-reinforced bioink (HC-PDN) which contained the peptide-dendrimer branched PEG with end-grafted norbornene (PDN) and the cysteamine-modified HA (HC). The extensive introduction of ethylene end-groups facilitates the grafting of sufficient moieties and enhances thiol-ene-induced crosslinking, making HC-PDN exhibits improved mechanical and rheological properties, as well as a significant reduction in reactive oxygen species (ROS) accumulation than that of methacrylated hyaluronic acid (HAMA). In addition, HC-PDN can be applied for the bioprinting of numerous complex structures with superior shape fidelity and soft matrix microenvironment. A heterogeneous and biomimetic hepatic tissue is concretely constructed in this work. The HepG2-C3As, LX-2s, and EA.hy.926s utilized with HC-PDN and assisted GelMA bioinks closely resemble the parenchymal and non-parenchymal counterparts of the native liver. The bioprinted models show the endothelium barrier function, hepatic functions, as well as increased activity of drug-metabolizing enzymes, which are essential functions of liver tissue in vivo. All these properties make HC-PDN a promising bioink to open numerous opportunities for in vitro model biofabrication. STATEMENT OF SIGNIFICANCE: In this manuscript, we introduced a peptide dendrimer system, which belongs to the family of hyperbranched 3D nanosized macromolecules that exhibit high molecular structure regularity and various biological advantages. Specifically, norbornene-modified peptide dendrimer was grafted onto PEG, and hyaluronic acid (HA) was selected as a base material for bioink formulation because it is a component of the ECM. Peptide dendrimers confer the following advantages to bioinks: (a) Geometric symmetry can facilitate construction of bioinks with homogeneous networks; (b) abundant surface functional groups allow for abundant crosslinking points; (c) the biological origin can promote biocompatibility. This study shows conceptualization to application of a peptide-dendrimer bioink to extend the Biofabrication Window of natural bioinks and will expand use of 3D bioprinting of in vitro models.


Subject(s)
Bioprinting , Dendrimers , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Bioprinting/methods , Biomimetics , Hyaluronic Acid , Printing, Three-Dimensional , Hydrogels/chemistry , Peptides , Norbornanes
SELECTION OF CITATIONS
SEARCH DETAIL
...