Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 28(9): e18353, 2024 May.
Article in English | MEDLINE | ID: mdl-38682742

ABSTRACT

Non-small-cell lung cancer (NSCLC) is a major cause of worldwide cancer death, posing a challenge for effective treatment. Our previous findings showed that Chinese herbal medicine (CHM) QiDongNing (QDN) could upregulate the expression of p53 and trigger cell apoptosis in NSCLC. Here, our objective was to investigate the mechanisms of QDN-induced apoptosis enhancement. We chose A549 and NCI-H460 cells for validation in vitro, and LLC cells were applied to form a subcutaneous transplantation tumour model for validation in more depth. Our findings indicated that QDN inhibited multiple biological behaviours, including cell proliferation, cloning, migration, invasion and induction of apoptosis. We further discovered that QDN increased the pro-apoptotic BAX while inhibiting the anti-apoptotic Bcl2. QDN therapy led to a decline in adenosine triphosphate (ATP) and a rise in reactive oxygen species (ROS). Furthermore, QDN elevated the levels of the tumour suppressor p53 and the mitochondrial division factor DRP1 and FIS1, and decreased the mitochondrial fusion molecules MFN1, MFN2, and OPA1. The results were further verified by rescue experiments, the p53 inhibitor Pifithrin-α and the mitochondrial division inhibitor Mdivi1 partially inhibited QDN-induced apoptosis and mitochondrial dysfunction, whereas overexpression of p53 rather increased the efficacy of the therapy. Additionally, QDN inhibited tumour growth with acceptable safety in vivo. In conclusion, QDN induced apoptosis via triggering p53/DRP1-mediated mitochondrial fission in NSCLC cells.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Dynamins , Lung Neoplasms , Mitochondrial Dynamics , Tumor Suppressor Protein p53 , Animals , Humans , Mice , A549 Cells , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Dynamins/metabolism , Dynamins/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
2.
Aging (Albany NY) ; 16(1): 466-492, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38194707

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) with Pulmonary arterial hypertension (PAH) shows a poor prognosis. Detecting related genes is imperative for prognosis prediction. METHODS: The gene expression profiles of LUAD and PAH were acquired from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, respectively. The co-expression modules associated with LUAD and PAH were evaluated using the Weighted Gene Co-Expression Network Analysis (WGCNA). The relationship between key gene expression with immune-cell infiltration and the tumor immune microenvironment (TIME) was evaluated. We confirmed the mRNA and protein levels in vivo and vitro. G6PD knockdown was used to conduct the colony formation assay, transwell invasion assay, and scratch wound assay of A549 cells. EDU staining and CCK8 assay were performed on G6PD knockdown HPASMCs. We identified therapeutic drug molecules and performed molecular docking between the key gene and small drug molecules. RESULTS: Three major modules and 52 overlapped genes were recognized in LUAD and PAH. We identified the key gene G6PD, which was significantly upregulated in LUAD and PAH. In addition, we discovered a significant difference in infiltration for most immune cells between high- and low-G6PD expression groups. The mRNA and protein expressions of G6PD were significantly upregulated in LUAD and PAH. G6PD knockdown decreased proliferation, cloning, and migration of A549 cells and cell proliferation in HPASMCs. We screened five potential drug molecules against G6PD and targeted glutaraldehyde by molecular docking. CONCLUSIONS: This study reveals that G6PD is an immune-related biomarker and a possible therapeutic target for LUAD and PAH patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Pulmonary Arterial Hypertension , Humans , Adenocarcinoma of Lung/genetics , Familial Primary Pulmonary Hypertension , Lung Neoplasms/genetics , Molecular Docking Simulation , Prognosis , Pulmonary Arterial Hypertension/genetics , RNA, Messenger , Tumor Microenvironment/genetics
3.
Front Pharmacol ; 13: 1019451, 2022.
Article in English | MEDLINE | ID: mdl-36523489

ABSTRACT

Feiyanning Formula (FYN), a Chinese herbal formula derived from summarized clinical experience, is proven to have anti-tumor effects in lung cancer patients. Osimertinib, a third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), can improve progression-free survival and overall survival of patients but drug resistance is inevitable. The current study evaluated the effects of FYN in osimertinib-resistant HCC827OR and PC9OR cells. FYN preferentially inhibited the proliferation and migration of HCC827OR and PC9OR cells. Moreover, FYN and osimertinib exhibited synergistic inhibitory effects on proliferation and migration. Real-time qPCR (RT-qPCR) and western blotting results indicated that FYN downregulated gene and protein levels of GSK3ß and SRFS1, which are enriched in the Wnt/ß-catenin pathway. Besides, FYN inhibited tumor growth and exhibited synergistic effects with osimertinib in vivo. Collectively, the results suggested that FYN exerted an anti-osimertinib resistance effect via the Wnt/ß-catenin pathway.

4.
Article in English | MEDLINE | ID: mdl-34938346

ABSTRACT

Xiaoxianxiong Tang (XXXT) is a well-known traditional Chinese medicine formula. Evidence is emerging supporting the benefits of XXXT in ameliorating therapy for non-small cell lung cancer (NSCLC). The purpose of this study aimed to explore the effects and mechanisms of XXXT through network pharmacological analysis and biological validation. TCMSP database was used to identify potentially active compounds in XXXT with absorption, distribution, metabolism, excretion screening, and their potential targets. The disease targets related to NSCLC were predicted by searching for Therapeutic Target database, GeneCards database, DrugBank database, and DisGeNET database. Of the 4385 NSCLC-related targets, 156 targets were also the targets of compounds present in XXXT. Subsequently, GO function and KEGG pathway enrichment and PPI network analyses revealed that, of the 95 targets and 20 pathways influenced by 20 ingredients in XXXT, 20 targets were associated with patient survival, and XXXT could exert an inhibitory action on the PI3K-AKT signaling pathway. Moreover, XXXT restrained the proliferation of A549 and H460 cells in a concentration-dependent manner and suppressed the mRNA and protein levels of key targets CCNA2, FOSL2, and BIRC5 closely linked to the PI3K-AKT pathway. Hence, XXXT has the potential to improve therapy for NSCLC by targeting the PI3K-AKT signaling pathway.

5.
Biomed Pharmacother ; 141: 111795, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34098217

ABSTRACT

Cancer recurrence poses a significant challenge. At the cellular level, recurrence takes place as a result of reactivation of dormant cancer cells residing at G0 phase. The aim of the study was to identify compounds that can trap prostate and lung cancer cells in G0 phase from a new Chinese herb recipe, Astringent recipe, consisting of Radix Paeoniae Alba, Agrimonia pilosa Ledeb, Fructus Mume, Fritillaria thunbergii Miq., Ganoderma Lucidum Karst, and Astragalus membranaceus (Fisch.) Bunge. Astringent recipe impeded cell cycle progression in prostate and lung cancer cells by rounding them up at G0 phase by flow cytometric analysis of cancer cells stained with Hoechst 33342 and Pyronin Y, respectively, for DNA and RNA. The anti-cancer efficacy of the recipe was found to be attributable to Agrimonia pilosa Ledeb. Further study established that agrimol B, a polyphenol derived from Agrimonia pilosa Ledeb, contributed to the activity of the herb. The action of agrimol B on the cancer cells was likely derived from its effect on c-MYC, SKP2 and p27 by immunoblotting and immunofluorescence. Oral administration of Agrimonia pilosa Ledeb or agrimol B reduced growth of prostate cancer cell xenograft in animal. In conclusion, Agrimol B can enrich for prostate and lung cancer cells in G0 state and influence key regulators that govern G0 status.


Subject(s)
Agrimonia , Antineoplastic Agents, Phytogenic/pharmacology , Butanones/pharmacology , G1 Phase Cell Cycle Checkpoints/drug effects , Phenols/pharmacology , Plant Extracts/pharmacology , Tumor Burden/drug effects , A549 Cells , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Butanones/isolation & purification , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/physiology , Dose-Response Relationship, Drug , Ellagic Acid/pharmacology , G1 Phase Cell Cycle Checkpoints/physiology , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Phenols/isolation & purification , Plant Extracts/isolation & purification , Tumor Burden/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...