Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(12): e33170, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021996

ABSTRACT

Objective: To investigate the effects of a high-fat diet (HFD) on the gut bacterium Roseburia intestinalis and butyric acid levels, and to assess their impact on ovarian function and epigenetic markers in mice. Methods: A total of 20 female ICR mice aged 4 weeks were randomly assigned to two groups and fed either a control diet (CD) or an HFD for 36 weeks. Post-intervention, ileal contents were analyzed for the quantification of butyric acid using ELISA, while feces were obtained for Roseburia intestinalis expression assessment via qPCR. Histological evaluations of intestinal and ovarian tissues included H&E and Alcian Blue-Periodic Acid Schiff (AB-PAS) staining, alongside immunohistochemical analysis for F4/80, and immunofluorescent detection of Occludin, ZO-1, 5 mC, and H3K36me3. Ovarian health was assessed through follicle counts and morphological evaluations. Statistical analyses were performed using GraphPad Prism 8.0, with P < 0.05 considered significant. Results: After 36 weeks, the HFD group showed significantly higher body weight compared to the CD group (P < 0.01). The HFD led to a decrease in Roseburia intestinalis and butyric acid levels, a reduction in intestinal goblet cells, and an increase in intestinal inflammation. Histological analyses revealed impaired ovarian follicular development and enhanced inflammation in the HFD mice, with immunofluorescent staining showing downregulation of the ovarian epigenetic markers 5 mC and H3K36me3. Conclusion: Our study demonstrates that long-term HFD negatively impacts ovarian function and epigenetic regulation. We found decreased levels of the gut bacterium Roseburia intestinalis and its metabolite, butyric acid, which contribute to these adverse effects. Additionally, the associated intestinal inflammation and compromised mucosal barrier may contribute to these adverse outcomes on female reproductive health.

2.
Sci Data ; 11(1): 573, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834587

ABSTRACT

Obesity is accompanied by multiple known health risks and increased morbidity, and obese men display reduced reproductive health. However, the impact of obesity on the testes at the molecular levels remain inadequately explored. This is partially attributed to the lack of monitoring tools for tracking alterations within cell clusters in testes associated with obesity. Here, we utilized single-cell RNA sequencing to analyze over 70,000 cells from testes of obese and lean mice, and to study changes related to obesity in non-spermatogenic cells and spermatogenesis. The Testicular Library encompasses all non-spermatogenic cells and spermatogenic cells spanning from spermatogonia to spermatozoa, which will significantly aid in characterizing alterations in cellular niches and the testicular microenvironment during high-fat diet (HFD)-induced obesity. This comprehensive dataset is indispensable for studying how HFD disrupts cell-cell communication networks within the testis and impacts alterations in the testicular microenvironment that regulate spermatogenesis. Being the inaugural dataset of single-cell RNA-seq in the testes of diet-induced obese (DIO) mice, this holds the potential to offer innovative insights and directions in the realm of single-cell transcriptomics concerning male reproductive injury associated with HFD.


Subject(s)
Diet, High-Fat , Obesity , Single-Cell Analysis , Testis , Transcriptome , Animals , Male , Diet, High-Fat/adverse effects , Mice , Testis/metabolism , Obesity/genetics , Obesity/etiology , Spermatogenesis
3.
Genes Nutr ; 19(1): 1, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243197

ABSTRACT

BACKGROUND: Obese patients have been found to be susceptible to iron deficiency, and malabsorption of dietary iron is the cause of obesity-related iron deficiency (ORID). Divalent metal transporter 1 (DMT1) and ferroportin (FPN), are two transmembrane transporter proteins expressed in the duodenum that are closely associated with iron absorption. However, there have been few studies on the association between these two proteins and the increased susceptibility to iron deficiency in obese patients. Chronic inflammation is also thought to be a cause of obesity-related iron deficiency, and both conditions can have an impact on spermatogenesis and impair male reproductive function. Based on previous studies, transgenerational epigenetic inheritance through gametes was observed in obesity. RESULTS: Our results  showed that obese mice had decreased blood iron levels (p < 0.01), lower protein and mRNA expression for duodenal DMT1 (p < 0.05), but no statistically significant variation in mRNA expression for duodenal FPN (p > 0.05); there was an increase in sperm miR-135b expression (p < 0.05). Bioinformatics revealed ninety overlapping genes and further analysis showed that they were primarily responsible for epithelial cilium movement, fatty acid beta-oxidation, protein dephosphorylation, fertilization, and glutamine transport, which are closely related to spermatogenesis, sperm development, and sperm viability in mice. CONCLUSIONS: In obese mice, we observed downregulation of DMT1 in the duodenum and upregulation of miR-135b in the spermatozoa.

4.
Zygote ; 27(3): 166-172, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31171048

ABSTRACT

SummaryRabbits play an important role in people's lives due to their high nutritional value and high-quality hair that can be used as raw material for textiles. Furthermore, rabbits are an important animal model for human disease, as genome-edited animals are particularly valuable for studying gene functions and pathogenesis. Somatic cell nuclear transfer (SCNT) is an important technique for producing genome-edited animals and it has great value in saving endangered species and in clone stem cell therapy. However, the low efficiency of SCNT limits its application, with the selection of suitable rabbit oocytes being crucial to its success. In the present study, we collected oocytes from ovarian follicles and stained them with 26 µM brilliant cresyl blue (BCB). We then matured the oocytes in vitro and used them for SCNT. Comparison of the BCB-positive oocytes with BCB-negative oocytes and the control group showed that the BCB-positive group had a significantly higher maturation rate (81.4% vs. 48.9% and 65.3% for the negative and control groups, respectively), cleavage rate (86.6% vs. 67.9% and 77.9%), blastocyst rate (30.5% vs. 12.8% and 19.6%), total number of blastocysts (90±7.5 vs. 65.3±6.3 and 67.5±5.7), and inner cell mass (ICM)/ trophectoderm (TE) index (42.3±4.2 vs. 30.2±2.1 and 33.9±5.1) (P<0.05). The BCB-positive group had a significantly lower apoptosis index (2.1±0.6 vs. 8.2±0.9 and 6.7±1.1 for the negative and control groups, respectively) (P<0.05). These findings demonstrate that BCB-positive oocytes have a higher maturation ability and developmental competence in vitro, indicating that BCB staining is a reliable method for selecting oocytes to enhance the efficiency of SCNT.


Subject(s)
Blastocyst/cytology , Fertilization in Vitro/methods , Oocytes/cytology , Oxazines/chemistry , Staining and Labeling/methods , Animals , Cells, Cultured , Cloning, Organism , Embryo Culture Techniques , Embryonic Development , Female , In Vitro Oocyte Maturation Techniques , Nuclear Transfer Techniques , Oocytes/chemistry , Ovarian Follicle/cytology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...